CS188 Discussion W10

Mingyu Derek Ma

Email: ma@cs.ucla.edu

Reminder

Class project deadline extended to Mar 18 Friday 11:59pm

Additional test trials on Gradescope [Details]

Peer evaluation quiz for everyone due Mar 18 11:59pm

Project report specifications update [Link]

* Include model checkpoint link in your report

* Include Gradescope trial number for the number you reported

HW?2 grades released

Final exam: next Monday Mar 14 3pm

https://bruinlearn.ucla.edu/courses/109782/discussion_topics/494916
https://bruinlearn.ucla.edu/courses/109782/discussion_topics/496460

Common issues with source project

e Use from pretrained insteadof from config toload
model

* Print Labels and preds to make sure your data loading is correct
» Attempt to make Sem-Eval work first to troubleshoot Com2Sense

* Look at your TensorBoard curves, your training loss has to decrease!
* DoNOT setthe 1ogging steps totoo small

eUseiters to eval to specify the checkpoint iteration to run
testing

Today

Two of the most voted review topics:
* Hidden Markov Models and the Viterbi algorithm

 Word vectors

Hidden Markov Model

* (Not hidden) Markov chain

« Example: bigram LM as a Markov chain

» States are words in the vocabulary
* To predict next word, you only need to look at the current word

 Hidden Markov Model

* Hidden events: such as part-of-speech tags
* Observed events: such as words in a sentences

 Generative model

Assumption of HMM

« Assumption 1: Markov Assumption P(qil|q1,--,9i—1) = P(qi|gi-1)
 When predicting the future, the past doesn’t matter, only the present
* The probability of a particular depends only on the previous
« Same intuition as bigram language model

» Assumption 2: Output Independence P(oilq1,...4i;-.-,41,01,-..,0i,...,0r) = P(0i|q:)

* Probability of an output observation
* Depends only on the that produced the observation
* Not on any other states or any other observations

 Word are independent of each other given the tag sequence

HMM Components

« States (unique hidden events)

* Observations (observed events)

Probability that the Markov chain will start in a certain state

Probability moving from a state to another state
Answer guestions like “which is the most likely tag after a VB tag?”

Probability of an observation being generated from a state
Answer questions like “if we are going to generate a VB, how likely is it to be ‘eat’?”

Prepare HMM parameters

* Assume there are only 2 states (NN, VB) and 2 words (eat, food)

« Corpus
eat NN food NN food VB
eat VB food_ NN
food NN eat NN eat VB
* [nitial state probabilities
 P(NN | start) = 2/3
 P(VB|start) =1/3

Prepare HMM parameters

* Assume there are only 2 states (NN, VB) and 2 words (eat, food)

« Corpus
eat NN food NN food VB
eat VB food_ NN
food NN eat NN eat VB

* Transition probability P(state | state)

from NN 2 ->2/4 2 ->2/4
from VB 1->1/1 0->0

Prepare HMM parameters

* Assume there are only 2 states (NN, VB) and 2 words (eat, food)

« Corpus
eat NN food NN food VB
eat VB food_ NN
food NN eat NN eat VB

* Emission probability P(word | state)

NN 2 ->2/5 3->3/5
VB 2->2/3 1->1/3

Decoding: set up lattice

V4(3) Vo(3) [V3(3)
Va(2) [Vo(2) V3(2)
v4(1) [Vo (1) [vs(1)

Note: Some connections are omitted for simplicity

B - N -

10

Initial probabilities:

PN N NN

Viterbi algorithm forward . .

Transition probabilities:

P(NN|NN)

v,(3) = =0*04 Vv,(3) =
0.60 = 0.07*0.8%0.4 = from/to to PN toN to NN
0 0.0224
p
P(NN | start) =0 fromPN 0 0.2 0.8
=0.6 P(NN|N)
=0.03*09
from N 01 0 0.9
v4(2) = V,(2) =
0.3*0.1= 0.07*0.2*0.2 = PN|N)
0.03 0.0028 = 0.0028* from NN 02 0.4 0.4
P(N | start) P(NN|PN)
=03 =0.07*0/8 For example: P(N|PN) = 0.2and P(NN|PN) = 0.8.
vi(1) = Vo(1) = P(t
0.1*0.7 = 0.03*0.1*0.2 = =00 Emission probabilities:
0.07 0.0006
P(PN | start)
Paul's red pen leaked

=01
PN 07 02 01 0
02 06 01
Note: Some connections are oi
NN 0 04 01 o 05

Viterbi algorithm backward

P(NN | NN e
v(3) =] 04 Va(3) = v3(3) = v,(3) =
0.6*0 = 0.07*0.8*0.4 = 0.0224*0.4%0.1 0.005376*0.9*0
0 J 0.0224 = 0.000896 5 =0.0024192
(N|NN)
=0.0224%0.4
P(NN | start) P(PN|NN)
=0.6 P(NN | N) \ =0.000896*0.2
=0.03*0
V(2) = Vo(2) =] Vs(2) = Va2 =
0.3*0.1= 0.07*0.2*0.2 = NN 0.0224*0.4*0.6 0.000896*0.4*0
=] 1 = V. 4
0.03 0.0028 J — 0.0028°0 0.005376 0.0000358
P(PN [N)
=0.005376%0.1
Vi) = V(1) = (NIPN) w= [wo-
0.1%0.7 = 0.03*0.1*0.2 = =0.000670.2 0.0224*0.2*0.1 » 0.005376*0.1*
0.07 0.0006 =0.000448 J P(PN | PN) L 0=0
= 0.000448*0

P(PN | start)
=01

red

Note: Some connections are omitted for simplicity

12

Time complexity of the Viterbi algorithm

* Given
 Number of states: Y

P(NN | NN)

@ vi(3) = 0%0.4 v,(3) = vs(3) = v4(3) =
0.6*0 = 0.07*0.8*0.4 = 0.0224*0.4*0.1 0.005376*0.9*0
. 0 0.0224 =0.000896 .5=0.0024192
* Sequence length: T Ry
P(NN | start) 1) P(PN|NN)
=0.6 P(NN I N) 4 7 =0.000896*0.2
=0.03*0.9 -
e YT+Y+YY (T_:I_) vi(2) = - vs(2) =
0.3*0.1= 0.07*0.2*0.2 = PNIN) 0.0224*0.4*0.6
. . 0.03) 0.0028 ~0.0028*0 =0.005376
* YT:trellis has YT (state, observed N,
H h , d P(N | start) P(NN | PN) =0.005376*0.1
=03 =0.07*0:8
event) pair, each we need to — — e —
H H H HH 0.1%0.7 = 0.03*0.1*0.2 = =v : 0.0224*0.2*0.1 0.005376*0.1*
multiple an emission probability S~
P(PN | start) =0.000448*0
=01

e Y:starttot=1 states

* YY (T-1):transition between
States, for each transition arc we Note: Some connections are omitted for simplicity
need to multiple a transition
probability

13

Word vectors

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 0 7 13
good
fool
wit

 One-hot word vectors

* Word vectors in the term-document matrix
* Word occurs in the documents
 Similar words have similar vectors because they tend to occur in similar documents
e Can use tf-idf or PPMI to weight this matrix

 Word vectors in the term-term matrix

aardvark .. computer data result pie sugar

* Dense word embeddings str;h;;zry : ; ; 2K
digital (0 1670 1683 85 o) 4)

* Vectors are shorter information 0 3325 3982 378 5 13

* Values are real-valued numbers (not like the other three which are sparse and

mostly zero)
14

Sparse word vectors

WOrd VeCtorS Dense word vectors
As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good
« One-hot word vectors tool

wit
 Word vectors in the term-document matrix
 Word occurs in the documents

 Similar words have similar vectors because they tend to occur in similar documents
e Can use tf-idf or PPMI to weight this matrix

 Word vectors in the term-term matrix

aardvark .. computer data result pie sugar
* Dense word embeddings SEmTET -
« Vectors are shorter Jdweal (9 . 0 e)

378 5 13
* Values are real-valued numbers (not like the other three which are sparse and
mostly zero)

15

Word2Vec

Skip-gram v.s Continuous bag-of-words
* Objective: should a word

likely to show up in a context

Input Projection Output Input Projection Output
W(e2) Wt2) » Word2vec trains a logistic
regression classifier (not

W(t-1 /(t-

% e FFNN, nor RNN etc) to

s e distinguish two cases
W(t+1) W(t+1) Positive: target word in context
T p— * Negative: random sa.mpled
word and context pairs
CBOW Skip-gram

* The learned weights are the
Lecture Note 03, Page 32 embeddings

16

Word2Vec: Skip-gram

1.0

aardvark [eee]] \W

apricot [eee

r W target words

0 zebra [ee9) |V| J
~ aardvark [¢se |1_x]__1\
apricot [eee

r C context & noise
words

zebra [eee| 2V)

Skip—gram model embeddings
Textbook J&M Figure 6.13

* The intuition of the skip-gram model is
based on embedding similarity ->

 Turn dot product to a probability [O, 1]
using
* We only need embeddings of each

target word and context word in the
vocabulary, each has |V|d parameters

« Target [input embedding
» Context [output embedding

17

Skip-gram example

« Say we have a piece of training data

. lemon, a [tablespoon of apricot jam, a] pinch ...
cl c2 W c3 c4
e Target word: apricot, 4 context words
 Create training examples
positive examples + negative examples -
w Cpos w Cneg w Cneg
apricot tablespoon apricot aardvark apricot seven
apricot of apricot my apricot forever
apricot jam apricot where apricot dear

apricot a apricot coaxial apricot

if

18

Skip-gram example

» Find target word (aardvark B8 -
. move apricot and jam closer,
embedding and context apricot [8sslwl — ~ < increasing G, - W
word embeddings W - L
» Update these embeddings S « ..apricot jam...”
to K zebra [eee) ¢ /P~
i
* |ncrease the dot products (aardvark @e® // ‘.‘ ‘,‘ move apricot. and matrix apart
with positive samples jam @ssjc,.. ¥ . decreasing Cpg W
» Decrease the dot products C{ [matrix @ Cougrl -
. . k= ne "
with negative samples ° Tolstoy [889) Crogo e - - 'movedapricot.and Tolstoy apart
« Using gradient descent | zebra [sss SESSSRE o

k
LCE = - logG(CPOS‘W)+Zlog°'(_cnegi'W)

i=1 19

Word2Vec: Continuous Bag of Words
CBOW (Continuous Bag of Words)

Input layer * Input and output embedding

1-hot input vectors
for each context word

) matrix
X lo Proj?cti(t))n;(?yer Output layer
. ‘ sum of embeddings robability of w . .
v w b for conext words el o Element-wise averaging for
w8 ; embeddings of context words
x;E : :k M
w4 » Nothing to do with RNN
I1X|V|

Lecture Note 03, Page 40

