
CS188 Discussion W10
Mingyu Derek Ma

Email: ma@cs.ucla.edu

Reminder

• Class project deadline extended to Mar 18 Friday 11:59pm

• Additional test trials on Gradescope [Details]

• Peer evaluation quiz for everyone due Mar 18 11:59pm

• Project report specifications update [Link]
• Include model checkpoint link in your report

• Include Gradescope trial number for the number you reported

• HW2 grades released

• Final exam: next Monday Mar 14 3pm

1

https://bruinlearn.ucla.edu/courses/109782/discussion_topics/494916
https://bruinlearn.ucla.edu/courses/109782/discussion_topics/496460

Common issues with source project
• Use from_pretrained instead of from_config to load
model

• Print labels and preds to make sure your data loading is correct

• Attempt to make Sem-Eval work first to troubleshoot Com2Sense

• Look at your TensorBoard curves, your training loss has to decrease!

• Do NOT set the logging_steps to too small!

• Use iters_to_eval to specify the checkpoint iteration to run
testing

2

Today

Two of the most voted review topics:

• Hidden Markov Models and the Viterbi algorithm

• Word vectors

3

Hidden Markov Model

• (Not hidden) Markov chain
• Example: bigram LM as a Markov chain
• States are words in the vocabulary
• To predict next word, you only need to look at the current word

• Hidden Markov Model
• Hidden events: such as part-of-speech tags
• Observed events: such as words in a sentences

• Generative model

4

Assumption of HMM

• Assumption 1: Markov Assumption
• When predicting the future, the past doesn’t matter, only the present
• The probability of a particular state depends only on the previous state
• Same intuition as bigram language model

• Assumption 2: Output Independence
• Probability of an output observation

• Depends only on the state that produced the observation
• Not on any other states or any other observations

• Word are independent of each other given the tag sequence

5

HMM Components
• States (unique hidden events)
• Observations (observed events)
• Initial probability distribution

• Probability that the Markov chain will start in a certain state

• Transition probability matrix
• Probability moving from a state to another state
• Answer questions like “which is the most likely tag after a VB tag?”

• Observation likelihoods / emission probabilities
• Probability of an observation being generated from a state
• Answer questions like “if we are going to generate a VB, how likely is it to be ‘eat’?”

6

Parameters need to
be learned

Prepare HMM parameters

• Assume there are only 2 states (NN, VB) and 2 words (eat, food)

• Corpus
eat_NN food_NN food_VB
eat_VB food_NN
food_NN eat_NN eat_VB

• Initial state probabilities
• P(NN | start) = 2/3
• P(VB | start) = 1/3

7

Prepare HMM parameters

• Assume there are only 2 states (NN, VB) and 2 words (eat, food)

• Corpus
eat_NN food_NN food_VB
eat_VB food_NN
food_NN eat_NN eat_VB

• Transition probability P(state | state)

8

from/to to NN to VB

from NN 2 -> 2/4 2 -> 2/4

from VB 1 -> 1/1 0 -> 0

Prepare HMM parameters

• Assume there are only 2 states (NN, VB) and 2 words (eat, food)

• Corpus
eat_NN food_NN food_VB
eat_VB food_NN
food_NN eat_NN eat_VB

• Emission probability P(word | state)

9

eat food

NN 2 -> 2/5 3 -> 3/5

VB 2 -> 2/3 1 -> 1/3

Decoding: set up lattice

10

Paul’s red pen leaked

NN

N

PN

v1(3)

v1(2)

v1(1)

v2(3)

v2(2)

v2(1)

v3(3)

v3(2)

v3(1)

v4(3)

v4(2)

v4(1)

π

Note: Some connections are omitted for simplicity

Viterbi algorithm forward

Paul’s red pen leaked

NN

N

PN

v1(3) =
0.6*0 =

0

v1(2) =
0.3*0.1 =

0.03

v1(1) =
0.1*0.7 =

0.07

v2(3) =
0.07*0.8*0.4 =

0.0224

v2(2) =
0.07*0.2*0.2 =

0.0028

v2(1) =
0.03*0.1*0.2 =

0.0006

v3(3) =
0.0224*0.4*0.1
= 0.000896

v3(2) =
0.0224*0.4*0.6

= 0.005376

v3(1) =
0.0224*0.2*0.1
= 0.000448

v4(3) =
0.005376*0.9*0
.5 = 0.0024192

v4(2) =
0.000896*0.4*0
.1 = 0.00003584

v4(1) =
0.005376*0.1*

0 = 0

π

Note: Some connections are omitted for simplicity

P(NN | start)
= 0.6

P(N | start)
= 0.3

P(PN | start)
= 0.1

P(NN | NN)
= 0*0.4

P(NN | N)
= 0.03*0.9

P(NN | PN)
= 0.07*0.8

P(N | NN)
= 0.0224*0.4

P(N | N)
= 0.0028*0

P(N | PN)
= 0.0006*0.2

P(PN | NN)
= 0.000896*0.2

P(PN | N)
= 0.005376*0.1

P(PN | PN)
= 0.000448*0

11

Viterbi algorithm backward

12

Paul’s red pen leaked

NN

N

PN

v1(3) =
0.6*0 =

0

v1(2) =
0.3*0.1 =

0.03

v1(1) =
0.1*0.7 =

0.07

v2(3) =
0.07*0.8*0.4 =

0.0224

v2(2) =
0.07*0.2*0.2 =

0.0028

v2(1) =
0.03*0.1*0.2 =

0.0006

v3(3) =
0.0224*0.4*0.1
= 0.000896

v3(2) =
0.0224*0.4*0.6

= 0.005376

v3(1) =
0.0224*0.2*0.1
= 0.000448

v4(3) =
0.005376*0.9*0
.5 = 0.0024192

v4(2) =
0.000896*0.4*0
.1 = 0.00003584

v4(1) =
0.005376*0.1*

0 = 0

π

Note: Some connections are omitted for simplicity

P(NN | start)
= 0.6

P(N | start)
= 0.3

P(PN | start)
= 0.1

P(NN | NN)
= 0*0.4

P(NN | N)
= 0.03*0.9

P(NN | PN)
= 0.07*0.8

P(N | NN)
= 0.0224*0.4

P(N | N)
= 0.0028*0

P(N | PN)
= 0.0006*0.2

P(PN | NN)
= 0.000896*0.2

P(PN | N)
= 0.005376*0.1

P(PN | PN)
= 0.000448*0

Time complexity of the Viterbi algorithm

13

• Given
• Number of states: Y
• Sequence length: T

• YT+Y+YY(T-1)
• YT: trellis has YT (state, observed

event) pair, each we need to
multiple an emission probability

• Y: start to t=1 states
• YY(T-1): transition between

states, for each transition arc we
need to multiple a transition
probability

Word vectors

• One-hot word vectors
• Word vectors in the term-document matrix

• Word occurs in the documents
• Similar words have similar vectors because they tend to occur in similar documents
• Can use tf-idf or PPMI to weight this matrix

• Word vectors in the term-term matrix
• Dense word embeddings

• Vectors are shorter
• Values are real-valued numbers (not like the other three which are sparse and
mostly zero)

14

Word vectors

• One-hot word vectors
• Word vectors in the term-document matrix

• Word occurs in the documents
• Similar words have similar vectors because they tend to occur in similar documents
• Can use tf-idf or PPMI to weight this matrix

• Word vectors in the term-term matrix
• Dense word embeddings

• Vectors are shorter
• Values are real-valued numbers (not like the other three which are sparse and
mostly zero)

15

Sparse word vectors
Dense word vectors

Word2Vec
• Objective: should a word
likely to show up in a context
• Word2vec trains a logistic
regression classifier (not
FFNN, nor RNN etc) to
distinguish two cases
• Positive: target word in context
• Negative: random sampled

word and context pairs

• The learned weights are the
embeddings

16

Lecture Note 03, Page 32

Word2Vec: Skip-gram

• The intuition of the skip-gram model is
based on embedding similarity -> dot
product
• Turn dot product to a probability [0, 1]
using sigmoid function
• We only need embeddings of each
target word and context word in the
vocabulary, each has |V|d parameters
• Target / input embedding
• Context / output embedding

17

Skip-gram model embeddings
Textbook J&M Figure 6.13

Skip-gram example

• Say we have a piece of training data

• Target word: apricot, 4 context words

• Create training examples

18

Skip-gram example
• Find target word
embedding and context
word embeddings
• Update these embeddings
to
• Increase the dot products
with positive samples

• Decrease the dot products
with negative samples

• Using gradient descent

19

Word2Vec: Continuous Bag of Words

20

• Input and output embedding

matrix

• Element-wise averaging for

embeddings of context words

• Nothing to do with RNN

Lecture Note 03, Page 40

