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Reminder

Class project deadline extended to Mar 18 Friday 11:59pm

Additional test trials on Gradescope [Details]

Peer evaluation quiz for everyone due Mar 18 11:59pm

Project report specifications update [Link]

* Include model checkpoint link in your report

* Include Gradescope trial number for the number you reported

HW?2 grades released

Final exam: next Monday Mar 14 3pm


https://bruinlearn.ucla.edu/courses/109782/discussion_topics/494916
https://bruinlearn.ucla.edu/courses/109782/discussion_topics/496460

Common issues with source project

e Use from pretrained insteadof from config toload
model

* Print Labels and preds to make sure your data loading is correct
» Attempt to make Sem-Eval work first to troubleshoot Com2Sense

* Look at your TensorBoard curves, your training loss has to decrease!
* DoNOT setthe 1ogging steps totoo small

eUseiters to eval to specify the checkpoint iteration to run
testing



Today

Two of the most voted review topics:
* Hidden Markov Models and the Viterbi algorithm

 Word vectors



Hidden Markov Model

* (Not hidden) Markov chain

« Example: bigram LM as a Markov chain

» States are words in the vocabulary
* To predict next word, you only need to look at the current word

 Hidden Markov Model

* Hidden events: such as part-of-speech tags
* Observed events: such as words in a sentences

 Generative model



Assumption of HMM

« Assumption 1: Markov Assumption  P(qil|q1,--,9i—1) = P(qi|gi-1)
 When predicting the future, the past doesn’t matter, only the present
* The probability of a particular depends only on the previous
« Same intuition as bigram language model

» Assumption 2: Output Independence P(oilq1,...4i;-.-,41,01,-..,0i,...,0r) = P(0i|q:)

* Probability of an output observation
* Depends only on the that produced the observation
* Not on any other states or any other observations

 Word are independent of each other given the tag sequence



HMM Components

« States (unique hidden events)

* Observations (observed events)

Probability that the Markov chain will start in a certain state

Probability moving from a state to another state
Answer guestions like “which is the most likely tag after a VB tag?”

Probability of an observation being generated from a state
Answer questions like “if we are going to generate a VB, how likely is it to be ‘eat’?”



Prepare HMM parameters

* Assume there are only 2 states (NN, VB) and 2 words (eat, food)

« Corpus
eat NN food NN food VB
eat VB food_ NN
food NN eat NN eat VB
* [nitial state probabilities
 P(NN | start) = 2/3
 P(VB|start) =1/3



Prepare HMM parameters

* Assume there are only 2 states (NN, VB) and 2 words (eat, food)

« Corpus
eat NN food NN food VB
eat VB food_ NN
food NN eat NN eat VB

* Transition probability P(state | state)

from NN 2 ->2/4 2 ->2/4
from VB 1->1/1 0->0



Prepare HMM parameters

* Assume there are only 2 states (NN, VB) and 2 words (eat, food)

« Corpus
eat NN food NN food VB
eat VB food_ NN
food NN eat NN eat VB

* Emission probability P(word | state)

NN 2 ->2/5 3->3/5
VB 2->2/3 1->1/3



Decoding: set up lattice

V4(3) Vo(3) [ V3(3)
Va(2) [ Vo(2) V3(2)
v4(1) [ Vo (1) [ vs(1)

Note: Some connections are omitted for simplicity

B - N -
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Initial probabilities:

PN N NN

Viterbi algorithm forward . .

Transition probabilities:

P(NN|NN)

v,(3) = =0*04 Vv,(3) =
0.60 = 0.07*0.8%0.4 = from/to to PN toN to NN
0 0.0224
p
P(NN | start) =0 fromPN 0 0.2 0.8
=0.6 P(NN|N)
=0.03*09
from N 01 0 0.9
v4(2) = V,(2) =
0.3*0.1= 0.07*0.2*0.2 = PN|N)
0.03 0.0028 = 0.0028* from NN 02 0.4 0.4
P(N | start) P(NN|PN)
=03 =0.07*0/8 For example: P(N|PN) = 0.2and P(NN|PN) = 0.8.
vi(1) = Vo(1) = P(t
0.1*0.7 = 0.03*0.1*0.2 = =00 Emission probabilities:
0.07 0.0006
P(PN | start)
Paul's red pen leaked

=01
PN 07 02 01 0
02 06 01
Note: Some connections are oi
NN 0 04 01 o 05



Viterbi algorithm backward

P(NN | NN e
v(3) = ] 04 Va(3) = v3(3) = v,(3) =
0.6*0 = 0.07*0.8*0.4 = 0.0224*0.4%0.1 0.005376*0.9*0
0 J 0.0224 = 0.000896 5 =0.0024192
(N|NN)
=0.0224%0.4
P(NN | start) P(PN|NN)
=0.6 P(NN | N) \ =0.000896*0.2
=0.03*0
V(2) = Vo(2) = ] Vs(2) = Va2 =
0.3*0.1= 0.07*0.2*0.2 = NN 0.0224*0.4*0.6 0.000896*0.4*0
=] 1 = V. 4
0.03 0.0028 J — 0.0028°0 0.005376 0.0000358
P(PN [N)
=0.005376%0.1
Vi) = V(1) = (NIPN) w= [ wo-
0.1%0.7 = 0.03*0.1*0.2 = =0.000670.2 0.0224*0.2*0.1 » 0.005376*0.1*
0.07 0.0006 =0.000448 J P(PN | PN) L 0=0
= 0.000448*0

P(PN | start)
=01

red

Note: Some connections are omitted for simplicity
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Time complexity of the Viterbi algorithm

* Given
 Number of states: Y

P(NN | NN)

@ vi(3) = 0%0.4 v,(3) = vs(3) = v4(3) =
0.6*0 = 0.07*0.8*0.4 = 0.0224*0.4*0.1 0.005376*0.9*0
. 0 0.0224 =0.000896 .5=0.0024192
* Sequence length: T Ry
P(NN | start) 1 ) P(PN|NN)
=0.6 P(NN I N) 4 7 =0.000896*0.2
=0.03*0.9 -
e YT+Y+YY ( T_:I_ ) vi(2) = - vs(2) =
0.3*0.1= 0.07*0.2*0.2 = PNIN) 0.0224*0.4*0.6
. . 0.03 ) 0.0028 ~0.0028*0 =0.005376
* YT:trellis has YT (state, observed N,
H h , d P(N | start) P(NN | PN) =0.005376*0.1
=03 =0.07*0:8
event) pair, each we need to — — e —
H H H HH 0.1%0.7 = 0.03*0.1*0.2 = =v : 0.0224*0.2*0.1 0.005376*0.1*
multiple an emission probability S~
P(PN | start) =0.000448*0
=01

e Y:starttot=1 states

* YY (T-1):transition between
States, for each transition arc we Note: Some connections are omitted for simplicity
need to multiple a transition
probability
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Word vectors

As You Like It Twelfth Night Julius Caesar Henry V

battle 1 0 7 13
good
fool
wit

 One-hot word vectors

* Word vectors in the term-document matrix
* Word occurs in the documents
 Similar words have similar vectors because they tend to occur in similar documents
e Can use tf-idf or PPMI to weight this matrix

 Word vectors in the term-term matrix

aardvark .. computer data result pie sugar

* Dense word embeddings str;h;;zry : ; ; 2K
digital ( 0 1670 1683 85 o) 4)

* Vectors are shorter information 0 3325 3982 378 5 13

* Values are real-valued numbers (not like the other three which are sparse and

mostly zero)
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Sparse word vectors

WOrd VeCtorS Dense word vectors
As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good
« One-hot word vectors tool

wit
 Word vectors in the term-document matrix
 Word occurs in the documents

 Similar words have similar vectors because they tend to occur in similar documents
e Can use tf-idf or PPMI to weight this matrix

 Word vectors in the term-term matrix

aardvark .. computer data result  pie sugar
* Dense word embeddings SEmTET -
« Vectors are shorter Jdweal (9 . 0 e )

378 5 13
* Values are real-valued numbers (not like the other three which are sparse and
mostly zero)
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Word2Vec

Skip-gram v.s Continuous bag-of-words
* Objective: should a word

likely to show up in a context

Input Projection Output Input Projection Output
W(e2) Wt2) » Word2vec trains a logistic
regression classifier (not

W(t-1 /(t-

% e FFNN, nor RNN etc) to

s e distinguish two cases
W(t+1) W(t+1)  Positive: target word in context
T p— * Negative: random sa.mpled
word and context pairs
CBOW Skip-gram

* The learned weights are the
Lecture Note 03, Page 32 embeddings
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Word2Vec: Skip-gram

1.0

aardvark [eee] ] \W

apricot [eee

r W target words

0 zebra [ee9) |V| J
~  aardvark [¢se |1_x]__1\
apricot [eee

r C context & noise
words

zebra [eee| 2V )

Skip—gram model embeddings
Textbook J&M Figure 6.13

* The intuition of the skip-gram model is
based on embedding similarity ->

 Turn dot product to a probability [O, 1]
using
* We only need embeddings of each

target word and context word in the
vocabulary, each has |V|d parameters

« Target [ input embedding
» Context [ output embedding
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Skip-gram example

« Say we have a piece of training data

. lemon, a [tablespoon of apricot jam, a] pinch ...
cl c2 W c3 c4
e Target word: apricot, 4 context words
 Create training examples
positive examples + negative examples -
w Cpos w Cneg w Cneg
apricot tablespoon apricot aardvark apricot seven
apricot of apricot my apricot forever
apricot jam apricot where  apricot dear

apricot a apricot coaxial apricot

if
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Skip-gram example

» Find target word ( aardvark B8 -
. move apricot and jam closer,
embedding and context apricot [8sslwl — ~ < increasing G, - W
word embeddings W - L
» Update these embeddings S « ..apricot jam...”
to K zebra [eee) ¢ /P~
i
* |ncrease the dot products ( aardvark @e® // ‘.‘ ‘,‘ move apricot. and matrix apart
with positive samples jam @ssjc,.. ¥ . decreasing Cpg W
» Decrease the dot products C{  [matrix @ Cougrl -
. . k= ne "
with negative samples ° Tolstoy [889) Crogo e - - 'movedapricot.and Tolstoy apart
« Using gradient descent | zebra [sss SESSSRE o

k
LCE = - logG(CPOS‘W)+Zlog°'(_cnegi'W)

i=1 19



Word2Vec: Continuous Bag of Words
CBOW (Continuous Bag of Words)

Input layer * Input and output embedding

1-hot input vectors
for each context word

) matrix
X lo Proj?cti(t))n;(?yer Output layer
. ‘ sum of embeddings robability of w . .
v w b for conext words el o Element-wise averaging for
w8 ; embeddings of context words
x;E : :k M
w4 » Nothing to do with RNN
I1X|V|

Lecture Note 03, Page 40



