# CS188 Discussion W10 

Mingyu Derek Ma
Email: ma@cs.ucla.edu

## Reminder

- Class project deadline extended to Mar 18 Friday 11:59pm
- Additional test trials on Gradescope [Details]
- Peer evaluation quiz for everyone due Mar 18 11:59pm
- Project report specifications update [Link]
- Include model checkpoint link in your report
- Include Gradescope trial number for the number you reported
- HW2 grades released
- Final exam: next Monday Mar 14 3pm


## Common issues with source project

- Use from_pretrained instead of from_config toload model
- Print labels and preds to make sure your data loading is correct
- Attempt to make Sem-Eval work first to troubleshoot Com2Sense
- Look at your TensorBoard curves, your training loss has to decrease!
- Do NOT set the logging_steps to too small!
- Use iters_to_eval to specify the checkpoint iteration to run testing


## Today

Two of the most voted review topics:

- Hidden Markov Models and the Viterbi algorithm
- Word vectors


## Hidden Markov Model

- (Not hidden) Markov chain
- Example: bigram LM as a Markov chain

- States are words in the vocabulary
- To predict next word, you only need to look at the current word
- Hidden Markov Model
- Hidden events: such as part-of-speech tags
- Observed events: such as words in a sentences
- Generative model


## Assumption of HMM

- Assumption 1: Markov Assumption

$$
P\left(q_{i} \mid q_{1}, \ldots, q_{i-1}\right)=P\left(q_{i} \mid q_{i-1}\right)
$$

- When predicting the future, the past doesn't matter, only the present
- The probability of a particular state depends only on the previous state
- Same intuition as bigram language model
- Assumption 2: Output Independence $P\left(o_{i} \mid q_{1}, \ldots q_{i}, \ldots, q_{T}, o_{1}, \ldots, o_{i}, \ldots, o_{T}\right)=P\left(o_{i} \mid q_{i}\right)$
- Probability of an output observation
- Depends only on the state that produced the observation
- Not on any other states or any other observations
- Word are independent of each other given the tag sequence


## HMM Components

- States (unique hidden events)
- Observations (observed events)
- Initial probability distribution
- Probability that the Markov chain will start in a certain state
- Transition probability matrix
- Probability moving from a state to another state
- Answer questions like "which is the most likely tag after a VB tag?"
- Observation likelihoods / emission probabilities
- Probability of an observation being generated from a state
- Answer questions like "if we are going to generate a VB, how likely is it to be 'eat'?"


## Prepare HMM parameters

- Assume there are only 2 states (NN, VB) and 2 words (eat, food)
- Corpus

```
eat_NN food_NN food_VB
eat_VB food_NN
food_NN eat_NN eat_VB
```

- Initial state probabilities
- $P($ NN $\mid$ start $)=2 / 3$
- $P(V B \mid$ start $)=1 / 3$


## Prepare HMM parameters

- Assume there are only 2 states (NN, VB) and 2 words (eat, food)
- Corpus

```
eat_NN food_NN food_VB
eat_VB food_NN
food_NN eat_NN eat_VB
```

- Transition probability P(state | state)

| from/to | to $N N$ | to $V B$ |
| :--- | :--- | :--- |
| from $N N$ | $2->2 / 4$ | $2->2 / 4$ |
| from $V B$ | $1->1 / 1$ | $0->0$ |

## Prepare HMM parameters

- Assume there are only 2 states (NN, VB) and 2 words (eat, food)
- Corpus

```
eat_NN food_NN food_VB
eat_VB food_NN
food_NN eat_NN eat_VB
```

- Emission probability P(word | state)

|  | eat | food |
| :--- | :--- | :--- |
| NN | $2->2 / 5$ | $3->3 / 5$ |
| VB | $2->2 / 3$ | $1->1 / 3$ |

## Decoding: set up lattice



Note: Some connections are omitted for simplicity

## Viterbi algorithm forward



## Viterbi algorithm backward



Note: Some connections are omitted for simplicity

## Time complexity of the Viterbi algorithm

- Given
- Number of states: Y
- Sequence length: $T$
- $\mathrm{YT}+\mathrm{Y}+\mathrm{YY}(\mathrm{T}-1)$
- YT: trellis has YT (state, observed event) pair, each we need to multiple an emission probability
- Y: start to t=1 states
- YY(T-1): transition between states, for each transition arc we need to multiple a transition probability



## Word vectors

- One-hot word vectors

|  | As You Like It | Twelfth Night | Julius Caesar | Henry V |
| :---: | :---: | :---: | :---: | :---: |
| battle <br> good <br> fool <br> wit | 1 | 0 | 7 | 13 |

- Word vectors in the term-document matrix
- Word occurs in the documents
- Similar words have similar vectors because they tend to occur in similar documents
- Can use tf-idf or PPMI to weight this matrix
- Word vectors in the term-term matrix
- Dense word embeddings
- Vectors are shorter

|  | aardvark | $\ldots$ | computer | data | result | pie | sugar | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| cherry | 0 | $\ldots$ | 2 | 8 | 9 | 442 | 25 | $\ldots$ |
| strawberry | 0 | $\ldots$ | 0 | 0 | 1 | 60 | 19 | $\ldots$ |
| digital | 0 | $\ldots$ | 1670 | 1683 | 85 | 5 | 4 | $\ldots$ |
| information | 0 | $\ldots$ | 3325 | 3982 | 378 | 5 | 13 | $\ldots$ |

- Values are real-valued numbers (not like the other three which are sparse and mostly zero)


## Sparse word vectors

## Word Vectors

- One-hot word vectors


## Dense word vectors

|  | As You Like It | Twelfth Night | Julius Caesar | Henry V |
| :--- | :---: | :---: | :---: | :---: |
| battle <br> good <br> fool | 1 | 0 | 7 | 13 |
| wit | 114 | 80 | 62 | 89 |

- Word vectors in the term-document matrix
- Word occurs in the documents
- Similar words have similar vectors because they tend to occur in similar documents
- Can use tf-idf or PPMI to weight this matrix
- Word vectors in the term-term matrix
- Dense word embeddings
- Vectors are shorter

|  | aardvark | $\ldots$ | computer | data | result | pie | sugar | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| cherry | 0 | $\ldots$ | 2 | 8 | 9 | 442 | 25 | $\ldots$ |
| strawberry | 0 | $\ldots$ | 0 | 0 | 1 | 60 | 19 | $\ldots$ |
| digital | 0 | $\ldots$ | 1670 | 1683 | 85 | 5 | 4 | $\ldots$ |
| information | 0 | $\ldots$ | 3325 | 3982 | 378 | 5 | 13 | $\ldots$ |

- Values are real-valued numbers (not like the other three which are sparse and mostly zero)


## Word2Vec

Skip-gram v.s Continuous bag-of-words


CBOW

Input Projection Output


Skip-gram
Lecture Note 03, Page 32

- Objective: should a word likely to show up in a context
- Word2vec trains a logistic regression classifier (not FFNN, nor RNN etc) to distinguish two cases
- Positive: target word in context
- Negative: random sampled word and context pairs
- The learned weights are the embeddings


## Word2Vec: Skip-gram



[^0]Textbook J\&M Figure 6.13

- The intuition of the skip-gram model is based on embedding similarity -> dot product
- Turn dot product to a probability $[0,1]$ using sigmoid function
- We only need embeddings of each target word and context word in the vocabulary, each has |V|d parameters
- Target / input embedding
- Context / output embedding


## Skip-gram example

- Say we have a piece of training data

- Target word: apricot, 4 context words
- Create training examples

| positive examples + |
| :--- |
| $w \quad c_{\mathrm{pos}}$ |
| apricot tablespoon |
| apricot of |
| apricot jam |
| apricot a |

negative examples -

| $w$ | $c_{\text {neg }}$ | $w$ | $c_{\text {neg }}$ |
| :--- | :--- | :--- | :--- |
| apricot | aardvark | apricot seven |  |
| apricot my | apricot forever |  |  |
| apricot where | apricot dear |  |  |
| apricot coaxial | apricot if |  |  |

## Skip-gram example

- Find target word embedding and context word embeddings
- Update these embeddings to
- Increase the dot products with positive samples
- Decrease the dot products with negative samples
- Using gradient descent


$$
L_{\mathrm{C} E}=-\left[\log \sigma\left(c_{\text {pos }} \cdot w\right)+\sum_{i=1}^{k} \log \sigma\left(-c_{\text {negs }_{i}} \cdot w\right)\right]
$$

## Word2Vec: Continuous Bag of Words

## CBOW (Continuous Bag of Words)

Input layer
1-hot input vectors
for each context word


- Input and output embedding matrix
- Element-wise averaging for embeddings of context words
- Nothing to do with RNN


[^0]:    Skip-gram model embeddings

