
CS188 Discussion W3
Mingyu Derek Ma

Email: ma@cs.ucla.edu

Reminder

• HW1 released, due at Jan 31 11:59pm

• Project midterm report due Feb 2nd

• For setting up remote machine: start early (there are waiting and

manual screening time needed)

Today: running experiments on cloud

• Set up virtual machines with GPUs on Google Cloud

• Tips for running experiments on a Linux machine

Create Instance with GPU on
GCP

1. Create project

• Click ”Create
Project”

• Or “New Project”
after clicking the
project name next
to the “Google
Cloud Platform”
title

Share project with teammates

• “IAM & Admin” > “IAM”

• Add new user to the project, so other teammates can access the
instances under this project

2. Enable Compute Engine API

• It will prompt you to enable to
the API when you first open the
interfaces for Compute Engine

• Otherwise you can enable the
API at “API and services” >
“Dashboard” > Search
“Compute Engine API” > Enable

3. Check/change GPU quota after 48 hours
• By default, we can use 0 GPUs
• We need to request an increase in GPU quota
• Resource quotas | Compute Engine Documentation | Google Cloud
• Check quota at “IAM & Admin” > “Quotas”
• Add “gpu” in the filter
• Select quota item, click “Edit Quotas”
• Submit quota change request, need 24-48 hours to get response

• Submit the quota increase request after 48 hours of creating your project, otherwise it will
be declined

https://cloud.google.com/compute/quotas

• Increase quota for GPUs (all regions)

• Increase quota for specific region and type of GPU you want to use (for
example NVIDIA K80 GPUs at us-west1 is limited to 1 in the screenshot)

• Increase quota for specific region and type of GPU you want to use (for
example NVIDIA K80 GPUs at us-west1 is limited to 1 in the screenshot)

GPU Choices

• GPUs on Compute Engine | Compute Engine
Documentation | Google Cloud

• GPUs pricing | Compute Engine: Virtual Machines (VMs) | Google
Cloud

• GPU regions and zones availability | Compute Engine
Documentation | Google Cloud

https://cloud.google.com/compute/docs/gpus
https://cloud.google.com/compute/gpus-pricing
https://cloud.google.com/compute/docs/gpus/gpu-regions-zones

4. Create an instance with attached GPUs

• Enter “Compute Engine” > “VM
Instances” > “Create Instance”

4. Create an instance with attached GPUs

• Create an instance

• Choose region and zone that has the GPU you requested
• Check region supported GPU types in this link
• For example, we choose “us-west1-b” to use K80 GPU

• Choose “GPU” under “Machine configuration”

• Select GPU type and number

https://cloud.google.com/compute/docs/gpus/gpu-regions-zones

4. Create an instance with attached GPUs

• Choose Book disk and image
• Use “Debian 10 based Deep Learning VM with CUDA 11.3” so that CUDA
driver is installed already
• Select size of the boot disk: should be enough for your data + code + saved
trained model (the saved model might be large) etc

• Change firewall setting
• Select allow HTTP and HTTPS traffic, so you can install packages and
connect to GitHub server

• Click ”Create”

5. Install GPU driver

• If you choose the image with CUDA, your GPU driver will be installed
automatically when you first login your machine
• SSH into your machine in the Google Cloud portal (you have to login using
your admin account to install the driver)
• Input “y” when it prompts “Would you like to install the NVIDIA driver? ”

5. Install GPU driver

5. Install GPU driver

5. Install GPU driver

• Verify the GPU driver is installed
• Type “nvidia-smi” command, you should see this if the driver is installed
successfully

5. Install GPU driver

• Otherwise you could following steps in
the following link
• Installing GPU drivers | Compute Engine
Documentation | Google Cloud

• We need to install
• NVIDIA driver
• CUDA toolkit
• CUDA runtime

https://cloud.google.com/compute/docs/gpus/install-drivers-gpu

Turn off your machine when it’s not using

• So you can save some credit

Run Sample Codebase

New environment file for the class project!

• Follow updated environment set up instruction and download the
new “requirements.txt” file as shown in this commit

Install environment and run code
• Using git clone to download codebase
• Following project README to install environment and train your model

Install miniconda
>>> wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
>>> sh Miniconda3-latest-Linux-x86_64.sh

Create conda environment
>>> conda create -n cs188 python==3.8
>>> conda activate cs188

Install dependencies needed
>>> conda install pip
>>> pip3 --no-cache-dir install torch==1.10.1+cu113 torchvision==0.11.2+cu113
torchaudio==0.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
>>> pip install -r requirements.txt
Run a training script
>>> sh scripts/train_com2sense.sh

https://github.com/telin0411/winter22_cs188_course_project_student
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

Tips for Experiments on Remote
Machine

Connect to your instance
• If you would like to connect to your machine using terminal directly, instead of using the browser-

based ssh window
• Create key (Detailed tutorial: How to Use SSH Public Key Authentication – ServerPilot)

• Using command ssh-keygen
• You will keep the private key (for example id_rsa) in your local computer

• Add key
• Add public key (like id_rsa.pub) to your Google Cloud instance setting
• Click into your instance, click “Edit” in the top navigation bar, find “SSH key”, click “Add Item”, enter your public SSH

key content there

• Connect your remote instance from your local terminal
ssh –i key_path username@external_ip_address

• Connecting to Linux VMs using advanced methods | Compute Engine Documentation | Google
Cloud

https://serverpilot.io/docs/how-to-use-ssh-public-key-authentication/
https://cloud.google.com/compute/docs/instances/connecting-advanced

Access file and coding remotely

• You will need to edit code and run the updated codebase with new
implementation

• Choice 1: VS Code
• Developing on Remote Machines using SSH and Visual Studio Code

• Choice 2: PyCharm
• Getting started with remote development | PyCharm (jetbrains.com)

• Choice 3: transfer files by scp/sftp
• Using scp/sftp to transfer file/code from your local machine to the remote machine

https://code.visualstudio.com/docs/remote/ssh
https://www.jetbrains.com/help/pycharm/remote-development-a.html

Monitor and specify GPU usage

• Check whether your job is running on GPU, memory usage, job ID
etc
• nvidia-smi

• Specify which GPU(s) to use
• export CUDA_VISIBLE_DEVICES="0”
• export CUDA_VISIBLE_DEVICES="0,1,2”
• export CUDA_VISIBLE_DEVICES=""

Run experiments in background
• Use tmux to run your job in background, so your job can continue running if your
ssh session broke
• tmux new -s exp1

• Create a new tmux session

• control + b, then press d
• Exit the session

• tmux a –t exp1
• Enter the session exp1 again

• tmux ls
• See all active sessions

Use Jupyter Notebook on Google Cloud

• Running Jupyter Notebook on Google Cloud Platform in 15 min | by
Amulya Aankul | Towards Data Science

https://towardsdatascience.com/running-jupyter-notebook-in-google-cloud-platform-in-15-min-61e16da34d52

Google Colab

• Another choice for using GPU

• It has a free version, but you cannot use your Google Cloud credit for
Colab

• We will introduce how to use colab in our demo next week

