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The Task: Protein Folding
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• Proteins are the building blocks of life, they are large, complex molecules 
essential to nearly every function that our body performs

• There are around 100 million known distinct proteins, each one has a unique 3D 
shape that determines how it works and what it does

• Figuring out the exact structure of a protein: expensive, time-consuming

Protein
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AlphaFold (deepmind.com) 4

https://www.deepmind.com/research/highlighted-research/alphafold


• What any given protein can do depends on its unique 3D structure
• Recipes for proteins (genes) are encoded in DNA
• Proteins are comprised of chains of amino acids
• Given those sequence, we want to know how chains of amino acids fold into the 

intricate 3D structure -> protein folding problem
• Why protein folds?

○ Attraction and repulsion between the 20 different types of amino acids cause the string 
to fold in a feat of “spontaneous origami”

○ Form the intricate curls, loops and pleats of a protein’s 3D structure

Task: protein folding
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Task: protein folding

AlphaFold: Using AI for scientific discovery (deepmind.com) 6

https://www.deepmind.com/blog/alphafold-using-ai-for-scientific-discovery-2020


• Experimental techniques
○ Cryo-electron microscopy
○ Nuclear magnetic r esonance
○ X-ray crystallography

• Disadvantages
○ Each method depends on a lot of trial and error
○ Take years of work
○ Take millions of dollars

Experimental techniques
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• Huge data available thanks to experimental structure techniques
○ 150,000 Protein Data Banks entries
○ Highly redundant, compare with scale of many other problems

■ 10s of millions of utterances for speech
■ 15 million labelled images in ImageNet for computer vision

AI needs data to train… Is data ready?
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• 13th Critical Assessment of protein Structure Prediction
• Biennial Critical Assessment of Protein Structure Prediction

○ Blind structure prediction of 82 newly-solved structured
○ For each chain, 3 weeks to return up to 5 structure predictions
○ 90+ groups from labs around the world

• Post-hoc scoring relative to ground-truth
○ Chains are partitioned into domains
○ Domains

■ Free-Modelling (FM): no homologous structure is available
■ Template-Based Modelling (TBM): a solved protein can be found that has a similar sequence and 

used to infer the shape
■ FM/TBM: intermediate category

○ Metrics are chosen post-hoc based on backbone alignment metric GDT_TS
• AlphaFold do exclusively free-modelling

Testbed: CASP13

Home - Prediction Center 9

https://predictioncenter.org/index.cgi


• Relied on fragment assembly
○ A structure hypothesis is repeatedly modified, typically by changing the shape of a short 

section while retaining changes that lower the potential
○ This requires many thousands of such moves and must be repeated many times to have 

good coverage of low-potential structures
• Existing works predict contact probability between residues

○ Distance between two residue are within a certain threshold
• There is neural network approach to predict distance between residues without 

covariation features

Existing FM approaches
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High-level Idea of AlphaFold
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• 2016: AlphaGo for Go
• 2018: AlphaFold first public test

○ Benchmarked in the 13th Critical 
Assessment of Protein Structure Prediction 
(CASP13), ranked first

• 2020: AlphaFold 2
○ Huge margin and win the CASP14
○ Three times more accurate than the next 

best system and comparable to 
experimental methods

Timeline of AlphaFold
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• Modeling protein shapes from scratch
• Without using previously solved proteins as templates
• Input data is the genetic sequence of the protein

Goal of AlphaFold
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• Amino acid residues connected in a chain with a repeating -N-C-C-
backbone
○ Side chains connected to the C-alpha determine structure
○ Goal is to predict the coordinates of every atom, particularly the backbone

• Torsion angles (Φ,Ψ) for each residue are a complete 
parameterization of backbone geometry
○ L-length sequence -> 2L parameters

• Another function to map torsion angles to atom coordinates

Representing “shape”

AlphaFold: improved protein structure prediction using potentials from deep learning - YouTube 14

https://www.youtube.com/watch?v=uQ1uVbrIv-Q


• Predictions to make
○ The distances between pairs of amino acids
○ The angles between chemical bonds that connect those amino acids -> torsion angles

• Train a neural network to predict a distribution of distances between every pair of 
residues in a protein

• Pair-wise probabilities were then combined into a score that estimates how 
accurate a proposed protein structure is

• The system primarily rely on distance prediction, get little gain from torsion angle 
prediction

Predict distances and torsion 
with neural networks
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• Previous works predict contact, which only contain very small distance scenarios
○ Contact prediction -> distance prediction
○ 2 bins to many more bins

• Benefits of distance prediction
○ Much richer and specific training signal
○ Fine-grained detailed signal
○ Network can propagate distance information that respects covariation, local structure 

and residue identities of nearby residues

Predict distances and torsion 
with neural networks
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• Three protein 
examples

• Brighter = closer
• Bright pixel far away 

from diagonal =
residues which are
distance along the
sequence but are
close in 3D structure

Distances vs 
3D structures
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1: a helix self-contact
2: a long-range strand-
strand contact
3: a medium-range strand-
strand contact
4: a non-contact
5: a very long range strand-
strand contact
Darker colors indicate a 
higher attribution weight

What we can read from the distogram

Extended Data Fig. 9 18



Methods
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Components
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• Structures: Protein Data Bank (PDB)
• Sequences: Uniclust30
• Training data includes 29,400 data points

Training data
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• Similar sequence tend to lead to similar 3D structure
• Use coevolutionary features

• Multiple Sequence Alignment (MSA): sequences that are similar to the target 
sequence
○ Use HHBlits and PSIBLAST profiles to find similar sequences

• Extract features (already used in previous works)
○ 2D features from Potts model fit in TensorFlow

■ Frobenius norm (L x L x 1): covariation between pairs of amino acids
■ Raw parameters (L x L x 22 x 22)

MSA features
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Intuition

MSA Features



1D input feature for each residue
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• Capable of modelling complex data
○ Long range, subtle patterns, with redundancy, needing generalization
○ Structure of the network gives inductive bias to certain kinds of modelling

• Inductive bias examples

Deep neural network

2020_12_01_TS_predictor_AlphaFold2.pdf (predictioncenter.org) 24

https://predictioncenter.org/casp15/doc/presentations/2020_12_01_TS_predictor_AlphaFold2.pdf


• Central component: convolutional neural network
• Target: Predict distance distributions between pairs of residues of a protein

Deep distance distribution network
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• Input: two-dimensional array of features, concatenating:
○ The one-dimensional feature for i
○ The one-dimensional feature for j
○ Two-dimensional feature for i, j

• Loss: cross entropy between predicted and ground-truth distance
• Output: softmax probability distribution for each i, j pair

○ Produce a distance histograms -> “distograms”
• Optimization: stochastic gradient descent

Deep neural network
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• Takes in any 64 x 64 region of the entire distance matrix
• Produce 64 bin distance histogram

Deep neural network
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• 220 residual blocks: repeat 220 times
• Each residual block consists of a sequence of neural 

network layers that interleave
○ Three batch norm layers
○ Two 1x1 projection layers
○ A 3x3 dilated convolution layer
○ Exponential linear unit (ELU) nonlinearities

• Dilated convolution
○ 3x3
○ At each stage only look at 9 pixels

• 21 million parameters

Deep dilated convolutional 
residual network Architecture 

of a single 
residual block
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• Always training and predicting on a pair of 64 consecutive residues
• Use 64 x 64 crops from the protein’s distance map

○ Consistent size

• Benefit
○ Efficient to train, especially distributed training
○ The model will not have inconsistency between long and short protein prediction
○ Each protein now gives rise to thousands of training examples -> helps avoid overfitting by data 

augmentation

• At test time
○ Average of all different versions of tiling

Cropping and tiling
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Distance and torsion prediction result
CASP protein 
T0955
b: ground-
truth
c: prediction
d: predicted
distance to
residue 29

Red: ground-
truth value
Green:
consider as a
contact
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• Reference potential: distance distribution given length, independent of sequence
• Distance potential: negative log likelihood of the distances, summed over all pairs
• Torsion potential: negative log likelihood of the torsion predicted
• Add Van Der Walls term to prevent steric clashes

Two distributions to potential
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• Function between torsion angles to atom coordinates
• Target: minimize potential (the sum of the distance, torsion and score2_smooth)

Structure realization by gradient descent
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• Repeated the optimization from 
sampled initialization

• Produce low-potential structures
• Then sample from the low-potential 

structure pools as new set of 
initialization to optimize

• After a few hundred cycles, the 
optimization converges and the 
lowest potential structure is chosen 
as the best candidate structure to 
output

Structure realization by gradient descent
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Training process



Structure realization by gradient descent
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Evaluation
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• Assessors divided the proteins into 104 domains for scoring and classified each 
as:
○ Being amenable to template based modeling (TBM)

■ Protein with a similar sequence has a known structure, and that homologous 
structure is modified in accordance with the sequence differences

○ Requiring free modeling (FM)
■ No homologous structure is available

○ FM/TBM: intermediate category
• For each domain, use accuracy, precision

How to evaluate the prediction?
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• Compare the final structure to the experimentally determined structures
○ TM score
○ GDT_TS (Global distance test, total score)

• Alternative accuracy without requiring geometry alignment
○ IDDT: percentage of native pairwise distances
○ Distogram IDDT (DLDDT)

How to evaluate the prediction?
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• AlphaFold predicts more FM domains with high accuracy than any other system

AlphaFold in the CASP13 assessment

Fig. 1

Number of FM domains 
predicted for a given TM-
score threshold
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Contact prediction
comparison with two best 
ranked methods



• Number of bins does not need 
to very large to have good 
performance

• Change construction of the 
potential
○ Distance prediction is the primary 

contribution for the potential
○ Removing torsion potential, reference 

correction or score2_smooth 
degrades the accuracy only slightly

• Adding Rosetta relax (side chain 
packing) is slightly helpful

Ablation study and the effect of number of bins

Fig 4b 39



• Around 100 node hours are 
enough

• Noisy restarts is helpful

Computation time for structure realization

Extended Data Fig. 4 40



Limitation
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• Experiments show the method misses some templates with huge margin
• Not directly predict side chains, the side chain prediction is replied on external 

tools
• Not use existing templates, and solved protein structure
• Interpretability and robustness of the model
• Heavily rely on MSA features and similar sequence

Limitation
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Conclusion
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• AlphaFold represents a considerable advance in protein-structure prediction
• Train a neural network to make accurate predictions of the distances between 

pairs of residues, which convey more information about the structure than 
contact predictions

• Construct a potential of mean force that can accurately describe the shape of a 
protein

• Resulting potential can be optimized by a simple gradient descent algorithm
• The resulting system achieves high accuracy, even for sequences with fewer 

homologous sequences

Conclusion
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Thanks!
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