Multitask Prompted Training Enables Zero-Shot Task Generalization

Apr 5, 2022

Reading Group

Presented by Mingyu Derek Ma

Introduction

- Recent works show that large LMs exhibit zero-shot generalization ability with only language modeling objectives
- An influential hypothesis is that large language models generalize to new tasks as a result of **an implicit process of multitask learning**
 - Generic text in the pretraining corpus may contain format and structure of QA
 - Given the large training corpus, it's reasonable to expect some tasks would appear explicitly in the pretraining corpora, like lists of trivia QA pairs
- What about convert those implicit signals to explicit ones, by training the model directly in a supervised and massively multi-task fashion

Goal

- Induce a model to better generalize to held-out tasks
- Being more robust to the wording choices of the prompts

Two questions

• Does multitask prompted training improve generalization to held-out tasks?

• Does training on a wider range of prompts improve robustness to prompt wording?

Related Works

- Implicit multitask learning in LM pretraining
- Explicit multitask learning
- Leading hypothesis is that models learn to understand the prompts as task instructions which help them generalize to held-out tasks
 - Depend on semantic meaningfulness of the prompts? Challenged
 - Only claim that prompts serve as a natural format for multitask training which empirically supports generalization to held-out tasks

Task

- Task: to refer to a general NLP ability that is tested by a group of specific datasets
- Create task taxonomy to mitigate fuzzy categorization issue
- 12 tasks and 62 datasets
 - Only English tasks
 - Not require special domain knowledge like biomedicine
 - No tasks about programming languages and structured annotations such as parse trees

Tasks

- Yellow: training mixture
- Green: held out

/ultiple-Choice QA	Closed-Book QA	Structure-To-Text	Sentence Completion	BIG-Bench	
CommonsenseQA	Hotpot QA	Common Gen	COPA	Code Description	
DREAM	Wiki QA	Wiki Bio	HellaSwag	Conceptual	
QuAIL			Story Cloze		
QuaRTz	Sentiment	Summarization			
Social IQA	Amazon	CNN Daily Mail	Natural Language	Known Unknowns	
WiQA	App Reviews	Gigaword	Inference	Language ID	
Cosmos OA			ANLI	Logic Grid	
	IMDB	MultiNews	СВ	Logical Deduction	
QASC	Rotten Tomatoes	SamSum	RTE	Missensentions	
QuaRel	Yelp	XSum		Misconceptions	
SciQ			Coreference	Movie Dialog	
Wiki Hop	Topic Classification	Paraphrase	Resolution	Novel Concepts	
	AG News	MRPC	Winogrando	Strategy QA	
Extractive QA	DBPedia	PAWS	Winogrande	Syllogisms	
Adversarial QA		TAWS	Word Sense		
Quoref		QQP	Disambiguation	vitamin C	
ROPES			WiC	Winowhy	
DuoRC					

Generalization vs memorization

Contamination analysis of pretraining corpus on test tasks

- Appearance of long common substrings between the **zero-shot test tasks** and **documents in C4**
- NLI premises tend to be sourced from the internet -> high numbers of matches
 - HellaSwag has 9.12% matches
 - ANLI has negligible overlapped hypotheses
 - RTE has high match numbers for both premises and hypotheses

Task	CB	HellaSwag	Lambada	Story Clo	oze WiC	Winogrande	WSC
Matches	1/250	912/10000	15/5153	3/1871	20/1400	0/1767	4/146
Task	I	ANLI premises	ANLI hyp	otheses	RTE premises	RTE hypothes	ses
Matc	hes	337/1000	6/100	00	329/3000	156/3000	7

Prompt Templates

- Convert diverse datasets into prompts
- Prompt template
 - Input template
 - Target template
- Built an interface to collect prompts interactively from the research community
- As long as the prompts are grammatical and understandable, creators can be creative
- Public Pool of Prompts (P3)
 - 2073 prompts for 177 datasets
 - 36 contributors
 - Each dataset has multiple prompt template

Prompt Templates

QQP (Paraphrase)

XSum (Summary)

Generative model and training

- Encoder-decoder architecture, never trained to generate the input
- Standard maximum likelihood training
- Based on T5
- Three versions
 - **TO**
 - T0+: T0 but additionally trained on GPT3's evaluation datasets
 - T0++: further adds SuperGLUE (except RTE and CB) as training dataset
- Two sizes
 - 11B parameters
 - 3B parameters
- Checkpoint selection: choosing the one yield the highest score on the validation splits of the training datasets -> still true zero-shot

Evaluation

- If the task is choosing from several options like multiple choice QA, they apply rank classification
 - Compute log-likelihood of each of the target options under the fine-tuned model
 - Select the option with the highest log-likelihood as the prediction
- Report **median** performance and **interquartile range** across **all prompts** for this dataset

Results: Generalization

 T0 vs T5+LM: benefits of multitask prompted training

Natural Language Inference

 T0 (11B) vs GPT-3 (175B): matches/exceed s GPT-3 on 9 out of 11 held-out datasets

Results: Generalization

T0 (11B) vs GPT-3 (175B): two exceptions, Winogrande and HellaSwag

Wei et al., 2021 also observes similar trend

HellaSwag's median increases from 33.65% to 57.93% if removing instruction, Winogrande performance do not improve though

1.9.2 HELLASWAG

Dataset from Zellers et al. (2019). Used in evaluation.

Data Example

Key	Value		
activity_label	Removing ice from car		
ctx	Then, the man writes over the snow covering the wi		
ctx_a	Then, the man writes over the snow covering the wi		
ctx_b	then		
endings	[', the man adds wax to the windshield and cuts it		
ind	4		
label	3		
source_id	activitynet~v1IBHYS3L-Y		
split	train		
split_type	indomain		

Prompts

Input Template:

```
Complete the description with an appropriate ending:
First, {{ ctx_a.lower() }} Then, {{ ctx_b.lower() }} ...
(a) {{ answer_choices[0] }}
(b) {{ answer_choices[1] }}
(c) {{ answer_choices[2] }}
(d) {{ answer_choices[3] }}
```

Target Template:

{{ answer_choices[label | int()] }}

Answer Choices Template:

{{endings | join(" ||| ")}}

Results: Generalization

- The dataset contains prompt for each sub-dataset
- Baseline LMs are decoder-only Transformer LMs

Results: Generalization

- At least one of the T0 variants outperform all baseline models on all tasks except for StrategyQA
- In most cases, training datasets increases, the better performance (T0++ > T0+ > T0)

- Wider range of prompts improves robustness to the wording of the prompts?
 - Effect of prompts per datasets
 - Effect of more datasets

Prompts per dataset p=0: no prompted training p=1: randomly chosen prompt p=5.7: all original-tasks prompts for all datasets p=8.03: T0 setting

- Large variance when using different evaluation prompts
- Even with 1 prompt, performance on held-out tasks can improve substantially over the non-prompted

baseline

Increase from 1 to ⁷⁰ 5.7 yields additional ⁶⁰ improvement in both⁵⁰ median and spread ⁴⁰ for most datasets ³⁰

- T0's inclusion all prompts further improves the median (9/11) and spread (8/11) generally
- Training on more prompts per dataset lead to better and more robust generalization
- Training on non original-task
 prompts can also be⁴⁰
 beneficial
 30

- Wider range of prompts improves robustness to the wording of the prompts?
 - Effect of prompts per datasets
 - Effect of more datasets

Prompts from more datasets

- Fix prompts per dataset, change number of datasets used in training
- Adding more datasets
 - Consistently leads to higher median performance
 - Does not always reduce interquartile range for held-out tasks

- Wider range of prompts improves robustness to the wording of the prompts?
 - Effect of prompts per datasets
 - Training on more prompts per dataset lead to better and more robust generalization
 - Training on non-original-task prompts can also be beneficial
 - Effect of more datasets
 - Increasing number of datasets does not consistently make the model more robust to the wordings of prompts

Results: Model Size

3B parameters version T0 also shows better generalization compared with T5+LM without prompted multitask training

T5+LM (11B) **T0** (3B) **T0** (11B)

Concurrent work: FLAN (Wei et al., ICLR'2022)

- Similar idea of enabling zero-shot generalization through multitask prompted training
- They train decoder-only LMs, they use single held-out task
- T0 (11B) is 10x smaller than FLAN (137B)
- T0 outperforms FLAN on some datasets, worse than FLAN on some other datasets
- Both T0 and FLAN underperform GPT-3 on Winogrande and HellaSwag on the coreference resolution task

Concurrent work: FLAN (Wei et al., ICLR'2022)

- They perform multi-task prompted training using an 8B model, but observed worse performance than baseline
 - While T0 shows 3B model shows better performance with multi-task prompted training
- FLAN shows more prompts has a negligible impact on performance
- Difference
 - T0 is based on encoder-decoder model
 - T0's pretraining objective is MLM
 - T0's prompts are qualitatively more diverse in terms of length and creativity

Conclusion: two questions

- Does multitask prompted training improve generalization to held-out tasks?
 - Multitask training enables zero-shot task generalization
 - T0 matches or exceeds the performance of GPT-3 on 9 out of 11 held-out datasets, with 16x smaller size
- Does training on a wider range of prompts improve robustness to prompt wording?
 - Training on more **prompts** per dataset consistently improves the median and decreases the variability of performance on held-out tasks
 - Training on prompts from a wider range of **datasets** also generally improves the medium but does not consistently decrease the variability