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I Introduction Businesses would like to know users’ opinions

Users can be benefited from others’ opinions

users’ opinions to
improve services

. . post amazon 5'_‘:E_lb£ )
product reviews ' faobao.com reviews data
post IMnh ye|p"‘
"
video reviews

ratings and opinions
of other customers
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I Introduction

methods of detecting, analyzing, and

Sentlment evaluating people’s state of mind

towards events, issues, or any other

Analysis

interest. (vadolahi et al., 2017)



Introduction

Background Info Is Available

reviews:
main document

product

user profile
user’s history
user's preferences

product information
product property
other user’s opinions

provide
domain
knowledge

more facts
and
possibilities
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Introduction
Background Information Is Not Unified

« User's perspective
 Mean/lenient user
Product’s perspective
* Type, category
Different background information
influences the results in different
perspectives
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Introduction

Objectives

A new sentiment analysis model

- utilize user and product information

- reflect impacts from user profile and
product information separately
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Related Work
Machine-Learning-based Sentiment Analysis

(Tang et al., 2014), (Kim, 2014) (Yang et al., 2016)

NN as classifier for text (Longetal., 2017)
Focus more on important text

(Wang and Manning, 2012)

Linear model or R
classification

kernel methods on RNN. LSTM and add more associate data
lexical features lik -tracking dat
. Neural-network- eV .rac e e
Traditional Attention
based Approaches

Way

7/34



Related Work

User and Product Info in Sentiment Analysis

Utilizing User Profile and
Product Information in
Sentiment Analysis

Memory network
(Tang, Qin and Liu, 2015; Dou, 2017)

 RNN + external memory

Use external info as attention
(Chen et al., 2016)

« State-of-the-art
All consider user profile and
product information as single
representation
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I Model Design

JUPMN
Joint User and Product Memory Network



Model Design
Model Overview

Sentiment Prediction

Joint Mechanism Input & Output

r"__”/}\\‘__‘\\ * |nput
UMN PIVIN « Documentd

 Awriteru

 Atargetp

Document d (numeric vector)  Qutput

* Discrete
sentiment
prediction

IITIHHHHHHHHHHI
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Hierarchical LSTM with Attention




Model Design
Model Overview

Sentiment Prediction

t Structure

Joint Mechanism

/—/‘%
| UMN PIVIN || Part 2: Memory

Networks
U (d) P (d)
Documentg (numeric vector)
Hierarchical LSTM with Attention Part 1: Document
Embedding

Document d (text)
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Model Design > Part 1: Document Embedding
Hierarchical Long Short-Term Memory Network

Sentence
Level

Word
Level

4 Document
Representation

LSTM
Layer

%, Sentence
/ Representation

LSTM
Layer

Word
Representation

\

d

%\Sentence Attention === ... ...

h — h e o o
/ I \Word Attention
S1 §2
h; —> hlz e —> L A Hi—> i, o oo h;

2
=
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=
3
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Model Design > Part 1: Document Embedding
Hierarchical Long Short-Term Memory Network

g d * Word-sentence-
Representation
Sentence %\&Sentence Attention-- ... ... dOCU ment |eve|
Level = LSTM

Layer

N Sentence
/ Representation

/ ,f e -\ convention (Chen et al., 2016)
Word Attenl]ou
Add attention in LSTM
/\ //‘\ /\'\ layers

LSTM H—> oo K K — cee K H—> i, e+ K .
Layer T '{ T T 'f‘ T“’ T T f * With user and product
\:ﬂ B attention
Word . . _ .
el With eye-tracking
w oW W w o ow ) W oW W cognition attention
\ S S S
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Model Design
Part 2: Memory Networks

Sentiment Prediction

1

Joint Mechanism

/—/‘%
| UMN PIVIN || Part 2: Memory

Networks
U (d) P (d)
Documentg (numeric vector)
Hierarchical LSTM with Attention Part 1: Document
embedding

Document d (text)
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I Model Design > Part 2: Memory Networks

Softmax —» Sentlimfent
Prediction

Output jypun = wyWydy + wPWPJ%

Attention Layer Attention Layer
3 3

o Attention Layer Attention Layer |
“ e 5 5 “ e
A A
U ( d ) Attention Layer Attention Layer P ( d )
(embedded by 1 1 (embedded by

hierarchical LSTM) hierarchical LSTM)

N
Document d
(embedded by hierarchical LSTM)
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Structure of Attention Layers

I Model Design > Part 2: Memory Networks

External
Memory

Output > ax
A aw
< dic-1
Attention Layer k
-

« Attention weight

Py, = Softma,:zc(a!_;?;_1 * M)

e Qutput of attention layer

m

1=0
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Evaluation and Analysis

Benchmark Datasets and Performance Metrics

Three Benchmark Datasets

- IMDB | |
. Diaoetal,2014  INDD -

* Yelp13, Yelp 14 .
« Tangetal., 2015a yelp’

IMDB | Yelpl3 | Yelpl4
number of classes 10 5, D
number of review documents 84,919 | 78,966 | 231,163
number of users 1,310 1,631 4,818
number of products 1,635 | 1,631 4,194
average sentences’ length 24.56 | 17.37 17.25
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Evaluation and Analysis

Benchmark Datasets and Performance Metrics

Three Benchmark Datasets

number of users

1600

1400

1200

—
o
o
o

800 A
600 -

400 A

200

0 20 40 60

IMDB
Yelpl3
Yelpl4

80 100 120 140
number of documents per user

500

600

(a) Statistic of documents # per user

number of products

1200 - E 1 IMDB
Yelpl3
Yelpl4
1000 +
800 -
600 A
400 A
200
0 = T T
0 20 40 60 80 100 120 140 400

number of documents per product

(b) Statistic of documents # per product
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Evaluation and Analysis
Benchmark Datasets and Performance Metrics

Performance Metrics
T
Accuracy = —
I=N

> i lpyi — gyl
MAE =
N

, e )2
RMSE:\/ZZ(py}V 9y:)
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Evaluation and Analysis

JUPMN and Comparison Models

Experimental Results

IMDB Yelp13 Yelp14
Model Acc | RMSE | MAE | Acc | RMSE | MAE | Acc | RMSE | MAE
Majority 0.196 | 2.495 | 1.838 | 0.392 | 1.097 | 0.779 | 0.411 | 1.06 | 0.744
Trigram 0.399 | 1.783 | 1.147 | 0.577 | 0.804 | 0.487 | 0.569 | 0.814 | 0.513
TextFeature | 0.402 | 1.793 | 1.134 | 0.572 | 0.800 | 0.490 | 0.556 | 0.845 | 0.520
AvgWordvec | 0.304 | 1.985 | 1.361 | 0.530 | 0.893 | 0.562 | 0.526 | 0.898 | 0.568
SSWE 0.312 | 1.973 | N/A | 0.549 | 0.849 | N/A | 0.557 | 0.851 | N/A
RNTN+RNN | 0.400 | 1.734 | N/A | 0.574 | 0.804 | N/A | 0.582 | 0.821 | N/A
CLSTM 0.421 | 1.549 | N/A | 0.592 | 0.729 | N/A | 0.637 | 0.686 | N/A
LSTM+LA 0.443 | 1.465 | N/A | 0.627 | 0.701 | N/A | 0.637 | 0.686 | N/A
LSTM+CBA | 0.489 | 1.365 | N/A | 0.638 | 0.697 | N/A | 0.641 | 0.678 | N/A
UPNN(K) 0.435 | 1.602 | 0.979 | 0.608 | 0.764 | 0.447 | 0.596 | 0.784 | 0.464
UPDMN(K) | 0.465 | 1.351 | 0.853 | 0.613 | 0.720 | 0.425 | 0.639 | 0.662 | 0.369
InterSub | 0476 | 1392 | N/A | 0.623 | 0.714 | N/A | 0.635 | 0690 | N/A_
LSTM+UPA | 0.533 | 1.281 | N/A | 0.650 | 0.692 | N/A | 0.667 | 0.654 | N/A
JUPMN 0.539 | 1.283 | 0.725 | 0.662 | 0.667 | 0.375 | 0.676 | 0.641 | 0.351

Group 1: simple methods based
on language features

Group 2: models using machine

learning

Group 3: models with user profile

and product information in machine

learning
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Evaluation and Analysis

JUPMN and Comparison Models

Experimental Results

IMDB Yelp13 Yelp14
Model Acc | RMSE | MAE | Acc | RMSE | MAE | Acc | RMSE | MAE
Majority 0.196 | 2.495 | 1.838 | 0.392 | 1.097 | 0.779 | 0.411 | 1.06 | 0.744
Trigram 0.399 | 1.783 | 1.147 | 0.577 | 0.804 | 0.487 | 0.569 | 0.814 | 0.513
TextFeature | 0.402 | 1.793 | 1.134 | 0.572 | 0.800 | 0.490 | 0.556 | 0.845 | 0.520
AvgWordvec | 0.304 | 1.985 | 1.361 | 0.530 | 0.893 | 0.562 | 0.526 | 0.898 | 0.568
SSWE 0.312 | 1.973 | N/A | 0.549 | 0.849 | N/A | 0.557 | 0.851 | N/A
RNTN+RNN | 0.400 | 1.734 | N/A | 0.574 | 0.804 | N/A | 0.582 | 0.821 | N/A
CLSTM 0.421 | 1.549 | N/A | 0.592 | 0.729 | N/A | 0.637 | 0.686 | N/A
LSTM+LA 0.443 | 1.465 | N/A | 0.627 | 0.701 | N/A | 0.637 | 0.686 | N/A
LSTM+CBA | 0.489 | 1.365 | N/A | 0.638 | 0.697 | N/A | 0.641 | 0.678 | N/A
UPNN(K) 0.435 | 1.602 | 0.979 | 0.608 | 0.764 | 0.447 | 0.596 | 0.784 | 0.464
UPDMN(K) | 0.465 | 1.351 | 0.853 | 0.613 | 0.720 | 0.425 | 0.639 | 0.662 | 0.369
InterSub 0.476 | 1.392 | N/A | 0.623 | 0.714 | N/A | 0.635 | 0.690 | N/A
LSTM+UPA | 0.533 | 1.281 | N/A | 0.650 | 0.692 | N/A | 0.667 | 0.654 | N/A
 JUPMN [ 0.539 | 1.283 [ 0.725 | 0.662 | 0.667 | 0.375 | 0.676 | 0.641 | 0.351

Findings

JUPMN outperforms
the state-of-the-art
model

Generally Group 2
performs better than
Group 1, Group 3
performs better than
Group 2

Exceptions exist

e« JextFeature
e [STM+CBA
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I Evaluation and Analysis

JUPMN with Different Configurations

Four aspects of precicton
. . ! . .
conflguratlons Joint Mechanism J0|nt WelghtS
— UMN PMN — — Memory Size
U(d) P (d)
Importance of User vs Document o (numeric vector) Number of Hops
Product Memory

Network Hierarchical LSTM with Attention

Document d (text)
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Evaluation and Analysis > JUPMN with Different Configurations

Importance of User vs Product Memory Network

Experimental Results

IMDB Yelp13 Yelpl4
Acc [|RMSE | MAE | Acc |[RMSE | MAE | Acc | RMSE | MAE
JUPMN-U(1) | 0.536 | 1.283 | 0.737 | 0.656 | 0.687 | 0.380 | 0.667 | 0.655 | 0.361
JUPMN-U(2) | 0.526 | 1.285 | 0.748 | 0.653 | 0.689 | 0.382 | 0.665 | 0.661 | 0.369
JUPMN-U(3) | 0.524 | 1.295 | 0.754 [ 0.651 | 0.692 | 0.388 | 0.661 | 0.667 | 0.374
JUPMN-P(1) | 0.523 | 1.346 | 0.769 | 0.660 | 0.668 | 0.370 | 0.670 | 0.649 | 0.357
JUPMN-P(2) | 0.517 | 1.348 | 0.775 | 0.656 | 0.680 | 0.380 | 0.667 | 0.656 | 0.364
JUPMN-P(3) | 0.512 | 1.356 | 0.661 | 0.651 | 0.699 | 0.388 | 0.661 | 0.661 | 0.370
JUPMN(1) | 0.539 | 1.283 | 0.725 | 0.662 | 0.667 | 0.375 | 0.676 | 0.641 | 0.351
JUPMN(2) 0.522 | 1.299 | 0.758 | 0.650 | 0.700 | 0.390 | 0.667 | 0.650 | 0.359
JUPMN(3) 0.502 | 1.431 | 0.830 | 0.653 | 0.686 | 0.382 | 0.658 | 0.668 | 0.371
- JUPMN-U
*  With only User Memory Network
- JUPMN-P

«  With only Product Memory Network

Observations

User profile influences
sentiments of movie reviews
more

Product information
influences sentiments of
restaurants reviews more
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Evaluation and Analysis > JUPMN with Different Configurations

Importance of User vs Product Memory Network

Investigating by Checking Joint Weights

m— combining weight of User Memory Network
=== combining weight of Product Memory Network

0 100 200 300 400 500
ity ion number

(a) for IMDB dataset

Sentiment
Softmax —» L
Prediction

WU We
[ \
IMDB Yelp13 Yelp14
wy wp wy wp wy; wp
0.534 | 0.466 | 0.475 | 0.525 | 0.436 | 0.564

(b) for Yelpl3 dataset (c) for Yelpl4 dataset

Joint weights for three datasets

Average joint weight for three datasets

» Verified the hypothesis
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Evaluation and Analysis > JUPMN with Different Configurations

Importance of User vs Product Memory Network
Investigating by Word Frequency Plotting - For IMDB dataset
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Evaluation and Analysis > JUPMN with Different Configurations

Importance of User vs Product Memory Network
Investigating by Word Frequency Plotting - For IMDB dataset
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ratings ratings ratings ratings

For movies reviews
« Users’ words are very different

* Products’ words are very objective 26 | 34



Evaluation and Analysis > JUPMN with Different Configurations

Importance of User vs Product Memory Network

weaue
Investigating by Word Frequency Plotting H For Yelp dataset
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Evaluation and Analysis > JUPMN with Different Configurations

Number of Hops (Computational Layers)

Experimental Results

IMDB Yelp13 Yelpl4

Acc | RMSE | MAE | Acc | RMSE | MAE | Acc | RMSE | MAE

PMN-U(1) | 0.536 | 1.283 | 0.737 | 0.656 | 0.687 | 0.380 | 0.667 | 0.655 | 0.361
JUPMN-U(2) | 0.526 | 1.285 | 0.748 | 0.653 | 0.689 | 0.382 | 0.665 | 0.661 | 0.369
JUPMN-U@3) | 0.524 | 1.295 | 0.754 | 0.651 | 0.692 | 0.388 | 0.661 | 0.667 | 0.374
JUPMN-P(1) | 0.523 | 1.346 | 0.769 | 0.660 | 0.668 | 0.370 | 0.670 | 0.649 | 0.357
JUPMN-P(2) | 0.517 | 1.348 | 0.775 | 0.656 | 0.680 | 0.380 | 0.667 | 0.656 | 0.364
JUPMN-P(3) | 0.512 | 1.356 | 0.661 | 0.651 | 0.699 | 0.388 | 0.661 | 0.661 | 0.370
JUPMN(1) | 0.539 | 1.283 | 0.725 | 0.662 | 0.667 | 0.375 | 0.676 | 0.641 | 0.351
JUPMN(2) | 0.522 | 1.299 | 0.758 | 0.650 | 0.700 | 0.390 | 0.667 | 0.650 | 0.359
JUPMN(3) 0.502 | 1.431 | 0.830 | 0.653 | 0.686 | 0.382 | 0.658 | 0.668 | 0.371

Observations

Smaller hop works

better

Possible explanations

 Data distortion

* Over-fitting

28 /34



Evaluation and Analysis > JUPMN with Different Configurations

Memory Size

Performance in different memory size

0.675 A1

. = __.____*—*—ﬁ

G > —O——— o o

0.650 A1

0.625

Performance(Accuracy)

0.525 -

0.550 A1

== |MDB
—g= Yelpl3
== Yelpl4

0.500

25

50

75

100
Dimension size

125

150

175

200

Memory

IMDB

Yelp13

Yelpl4

Size

Acc | RMSE | MAE

Acc | RMSE | MAE

Acc | RMSE | MAE

10

0.501

1.572

0.892

0.625

0.788

0.467

0.647

0.692

0.397

20

0.503

1.550

0.866

0.631

0.778

0.456

0.651

0.684

0.384

30

0.516

1.383

0.791

0.643

0.707

0.397

0.668

0.661

0.362

40

0.524

1.367

0.778

0.647

0.695

0.390

0.674

0.641

0.351

50

0.528

1.368

0.769

0.654

0.680

0.379

0.671

0.653

0.356

75

0.529

1.339

0.768

0.655

0.690

0.384

0.674

0.653

0.354

100

0.539

1.283

0.725

0.662

0.667

0.375

0.676

0.641

0.351

« Larger memory helps
 When memory size reaches /5,
no longer improve
* Thereis not enough
documents
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Evaluation and Analysis > JUPMN with Different Configurations

Joint Weights

: Sentiment
Softmax —» .
j Prediction

JUPMN (not weighted)
Output jupmn = WUJ?( + Wpd_?{
JUPMN

WU Wp ST i

[ \ Output jypmn = wyWydy + ’ZUPWPJ?(
IMDB Yelpl3 Yelpl4

Model Acc | RMSE | MAE Acc | RMSE | MAE Acc | RMSE | MAE

JUPMN (not weighted) | 0.538 | 1.289 | 0.737 | 0.656 | 0.682 | 0.379 | 0.670 | 0.645 | 0.354

JUPMN 0.539 | 1.283 | 0.725 | 0.662 | 0.667 | 0.375 | 0.676 | 0.641 | 0.351

* Weighted version works better
* Weight help to balance the influences of UMN and PMN

30/34



Evaluation and Analysis

Case Study

Example: Example document

True sentiment label: 10 (most positive)
Predicted sentiment by LSTM network: 1 (most negative)

Predicted sentiment by JUPMN: 10 (most positive)

Original review text:

okay, there are two types of movie lovers: ... they expect to see a Titanic every
time they go to the cinema ... this movie sucks? ... it is definitely better than
other sci-fi films ..... the audio and visual effects are simply terrific and Travolta’s
performance is brilliant-funny and interesting. what people expect from sci-fi movies
s beyond me ... the rating for Battlefield Earth is below 2.5, which is unacceptable
for a movie with such craftsmanship. Scary movie, possibly the worst movie of all
time - including home made movies, has a 6! maybe we should all be a little more
subtle when we criticize movies like this and especially sci-fi movies, since they have

become an endangered genre ... give this movie the recognition it deserves.

What is this user’s opinion?
» Cite negative reviews to praise

JUPMN can learn the features

of this user

 This useris a science fiction
movie

JUPMN can learn the features

of this movie(product)
« This movie is relative great
according to other reviews
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I Conclusion and Future Work

Conclusion

* Proposed JUPMN
« JUPMN outperforms the state-of-the-art sentiment analysis model
« Analysis on different configuration is employed

* Research paper
Yunfei Long*, Mingyu Ma*, Rong Xiang, Qin Lu, Chu-Ren Huang. Fusing User
Memory and Product Memory for Sentiment Classification. (*: Equal contribution)

Future Work

« More knowledge in memory network
« Application of JUPMN in more languages datasets
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