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We proposed a new Joint User and Product Memory Network (JUPMN) utilizing user profile and product information in separate ways into sentiment
classification. Inspired by the successful utilization of memory network, our model first creates document representations using hierarchical LSTM model and
then feeds the document vectors into new carefully designed user and product memory networks to reflect corresponding features. The evaluation of JUPMN
on three benchmark review datasets shows that JUPMN outperforms the state-of-the-art model and further analysis of experimental results is employed.
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JUPMN vs Comparison Models

User profile influences sentiments of movie

IMDB Yelp13 Yelp14 reviews more
Model Acc | RMSE | MAE | Acc | RMSE | MAE | Acc | RMSE | MAE
Majority 0.196 | 2.495 | 1.838 [ 0.392 | 1.097 | 0.779 [ 0.411 | 1.06 | 0.744 e Product information influences sentiments of
Trigram 0.399 | 1.783 | 1.147 | 0.577 | 0.804 | 0.487 | 0.569 | 0.814 | 0.513
TextFeature | 0.402 | 1.793 | 1.134 | 0.572 | 0.800 | 0.490 | 0.556 | 0.845 | 0.520 . 101
AvgWordvec | 0.304 | 1.985 | 1.361 | 0.530 | 0.893 | 0.562 | 0.526 | 0.898 | 0.568 restaurants reviews more retine
SSWE 0.312 | 1.973 | N/A | 0.549 | 0.849 | N/A | 0.557 | 0.851 | N/A
RNTN-+RNN | 0.400 | 1.734 | N/JA | 0.574 | 0.804 | N/A | 0.582 | 0.821 | N/A
CLSTM 0.421 | 1.549 | N/A [ 0.592 | 0.720 | N/A | 0.637 | 0.686 | N/A ,IMD B , ,Ye1p13, ,Yelp14 :
LSTM+LA | 0.443 | 1.465 | N/A | 0.627 | 0.701 | N/A | 0.637 | 0.686 | N/A wyy wp Wy wp wy; wh
LSTM-+CBA | 0.489 | 1.365 | N/A | 0.638 | 0.697 | N/A | 0.641 | 0.678 | N/A
UPNN(K) 0.435 | 1.602 | 0.979 | 0.608 | 0.764 | 0.447 | 0.596 | 0.784 | 0.464 0.534 | 0.466 | 0.475 | 0.525 | 0.436 | 0.564
UPDMN(K) | 0.465 | 1.351 | 0.853 | 0.613 | 0.720 | 0.425 | 0.639 | 0.662 | 0.369 o .
InterSub 0.476 | 1.392 | N/A | 0.623 | 0.714 | N/A [ 0.635 | 0.690 | N/A A verage /0//7[' We/ghl‘ for three dataselts ratings
LSTM+UPA | 0.533 | 1.281 | N/A | 0.650 | 0.692 | N/A | 0.667 | 0.654 | N/A
_JUPMN [ 0.539 | 1.283 [ 0.725 | 0.662 | 0.667 | 0.375 [ 0.676 | 0.641 | 0.351
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