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<domain_restaurant> x k

<slot_pricerange> x k

<type_categorical> x k

domain is restaurant, slot is price range 
(price budget for the restaurant), type is 

categorical (expensive or cheap). 

[sys] how expensive É  [usr] 
a cheap one is the best! 

Q: what is the price range of the 
restaurant the user prefers! 

Sequence embeddings
Segment embeddings Decoder stack+
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A: domain is restaurant, slot is 
price range, type is categorical. 

answer is cheap

Reiteration Answer phrase

Predicted slot value: 
(restaurant, price range, cheap)

! Existing works formulate DST as a conditional generation task with prompts to provide information about 
slot name, slot description, slot type, possible values, priming examples, questions etc.

! Challenges
! Existing works allfine -tune the entire LM along with the prompt token embeddings
! Real-world deployment needs to train and host separate LMs for different domains and tasks
! Limited data is available for new domains or tasks

! Wepropose a parameter -efficient and data -efficient DST model forlow -resource settings, which only needs 
to update 0.5% of parameters compared with baselines while achieving state-of-the-art performance

! Dialogue state tracking extracts structured conversation progress in a list of (slot, value) 
pairs from unstructured dialogue utterances

Method

Experiments
Setting : low-resource Joint Goal 
Accuracy on MultiWOZ2.0, compared with 
prompt-based generative DST models
Results
! Higher JGA than all baselines using 1% or 
less training data while using less than 
0.5% of parameters

! Comparably performance with baselines 
when using 5% or 10% data

Compared with baselines, our model is comparable on 
Òopen Ó and Òtime Ó slots, and superior on 
Òcategorical Ó, Ònumber Ó and Òday Ó slots

Ablation study shows effectiveness of segment 
awareness and the reiteration technique

Task-specific parameters Task metadata in objective

Distinguishing segments
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3

Task prompt tokens : Shared across instances of the 
same task, represent domain, slot, and type information

Domain

Slot

Type

Word-mapping prompt tokens : Obtain taskknowledge
contained in natural language instruction and optimize
human-created prompts with continuous embedding
space; shared acrossinstances with the same words

Prefix

Question

Reiterate the querying task metadata before generating the 
answer; explicit task information as a part of the objective

Use randomly initialized segment embedding to distinguish 
segments with diverse formats (prompt segments, answer 
segment, system turns and user turns in dialogue history)


