Multi-hop Evidence Retrieval for Cross-document Relation Extraction


Relation Extraction (RE) has been extended to cross-document scenarios because many relations are not simply described in a single document. This inevitably brings the challenge of efficient open-space evidence retrieval to support the inference of cross-document relations, along with the challenge of multi-hop reasoning on top of entities and evidence scattered in an open set of documents. To combat these challenges, we propose Mr.CoD, a multi-hop evidence retrieval method based on evidence path mining and ranking with adapted dense retrievers. We explore multiple variants of retrievers to show evidence retrieval is an essential part in cross-document RE. Experiments on CodRED show that evidence retrieval with Mr.Cod effectively acquires cross-document evidence that essentially supports open-setting cross-document RE. Additionally, we show that Mr.CoD facilitates evidence retrieval and boosts end-to-end RE performance with effective multi-hop reasoning in both closed and open settings of RE.

In Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada