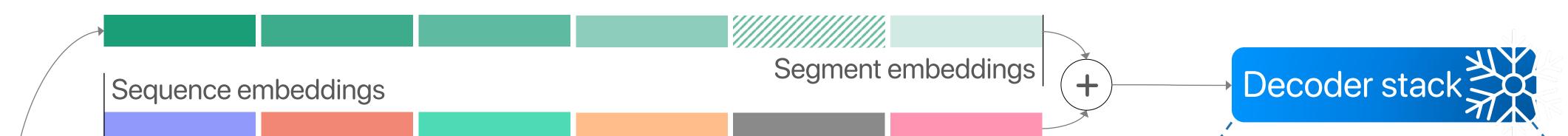
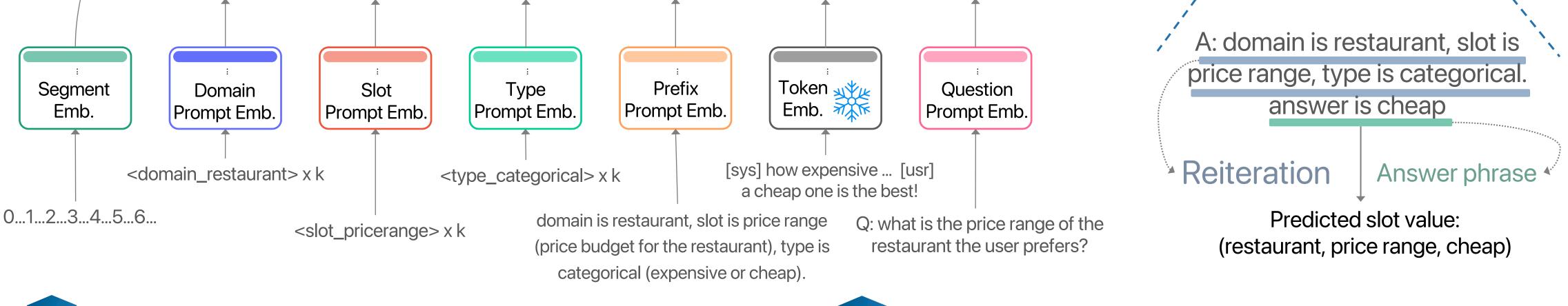
Parameter-Efficient Low-Resource Dialogue State Tracking by Prompt Tuning

Motivation

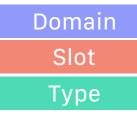
- Dialogue state tracking extracts structured conversation progress in a list of (slot, value) pairs from unstructured dialogue utterances
- Existing works formulate DST as a **conditional generation task with prompts** to provide information about slot name, slot description, slot type, possible values, priming examples, questions etc.
- Challenges
 - \circ Existing works all fine-tune the entire LM along with the prompt token embeddings
 - \circ Real-world deployment needs to train and host separate LMs for different domains and tasks
 - \circ Limited data is available for new domains or tasks
- We propose a **parameter-efficient** and **data-efficient** DST model for **low-resource** settings, which only needs to update 0.5% of parameters compared with baselines while achieving state-of-the-art performance

Method





Task-specific parameters



Task prompt tokens: Shared across instances of the same task, represent domain, slot, and type information

Prefix Question **Word-mapping prompt tokens**: Obtain task knowledge contained in natural language instruction and optimize human-created prompts with continuous embedding space; shared across instances with the same words

2

Task metadata in objective

Reiterate the querying task metadata before generating the answer; explicit task information as a part of the objective

Distinguishing segments

Use randomly initialized segment embedding to distinguish segments with diverse formats (prompt segments, answer segment, system turns and user turns in dialogue history)

Experiments

		5	10	20	1%	5%	10%	5	10	20	1%	5%	10%	5	10	20	1%	5%	10%
Model	Params#	Att	raction	(3 slot	s, 1% =	= 27 cc	onv.)	H	otel (1	0 slots,	1% =	33 con	v.)	Res	taurant	: (7 slot	ts, 1%	= 38 co	onv.)
TRADE						52.19	58.46					31.93	41.29					47.31	53.65
DSTQA						51.58	61.77	—				33.08	49.69					35.33	54.27
T5DST	60M	4.77	21.93	30.57	40.68	52.12	60.13	8.19	13.46	17.94	18.63	38.76	46.13	13.80	19.51	22.79	29.47	53.32	58.44
Lee et al.	60M	6.33	19.12	34.53	37.56	54.34	58.75	9.31	15.76	22.07	24.41	40.11	42.98	15.87	19.66	22.15	30.96	48.94	58.59
Li et al.	335M	7.90	27.09	35.63	42.18	49.13	60.85	12.49	15.15	19.44	24.04	37.88	46.47	17.27	22.30	25.68	30.70	49.75	58.50
Ours	271K	33.56	39.41	45.75	47.28	56.99	63.61	15.63	18.18	22.50	33.01	38.24	45.60	19.76	25.72	27.65	34.40	50.81	55.79
]	Гахі (4	slots, 1	1% = 1	5 conv	.)	Г	Frain (6	slots,	1% = 2	29 conv	r.)			Ave	rage		
TRADE						59.03	60.51					48.82	59.65					47.86	54.71
DSTQA						58.25	59.35					50.36	61.28					45.72	57.27
T5DST	60M	48.22	53.74	58.27	58.19	59.23	69.03	12.31	21.93	36.45	43.93	69.27	69.48	17.46	26.11	33.20	38.18	54.54	60.64
Lee et al.	60M	45.32	49.93	58.58	58.52	60.77	71.23	13.57	25.02	38.52	50.26	69.32	69.72	18.08	25.90	35.17	40.34	54.70	60.25
Li et al.	335M	50.99	57.47	58.49	58.26	61.68	69.23	17.56	27.42	39.27	45.32	71.69	73.45	21.24	29.89	35.70	40.10	54.03	61.70
Ours	271K	51.11	59.63	60.89	60.33	61.63	63.00	18.95	30.95	50.34	52.05	69.51	75.00	27.80	34.78	41.43	45.41	55.44	60.60

Setting: low-resource Joint Goal Accuracy on MultiWOZ 2.0, compared with prompt-based generative DST models

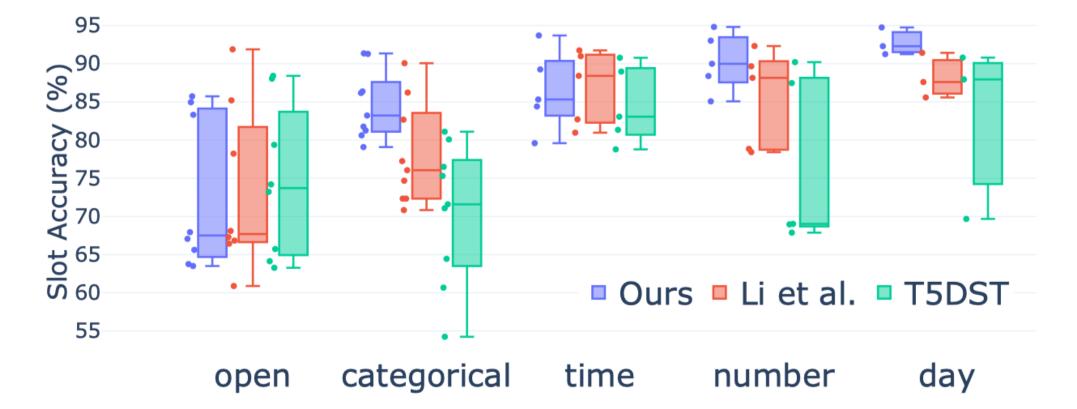
Results

Higher JGA than all baselines using 1% or

less training data while using less than 0.5% of parameters

Comparably performance with baselines

when using 5% or 10% data



Compared with baselines, our model is comparable on "open" and "time" slots, and superior on "categorical", "number" and "day" slots

Model	Attr.	Hotel	Rest.	Taxi	Train	Avg
w/o segment emb.	34.35	23.18	27.33	59.69	43.30	37.57
w/o reiteration	45.08	27.57	33.48	59.89	51.08	43.42
Full model	47.28	33.01	34.40	60.33	52.05	45.41

Ablation study shows effectiveness of **segment awareness** and the **reiteration** technique