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What is a taxonomy

Online catalog taxonomy

Department

Grocery & Gourmet Food
Coffee Beverages
Single-Serve Coffee Capsules & Pods
Tea Beverages
Hot Cocoa
v See more
Kitchen & Dining
Reusable Coffee Filters
Single-Serve Brewers
v See All 9 Departments

Avg. Customer Review
RARARTY &up
WA A T7vT aup
W TIYIYr &aup
WITTITIYT &Up

Brand

\:| Green Mountain Coffee Roasters
\:| Starbucks

D San Francisco Bay Coffee

D Tully's Coffee

\:| Caribou Coffee

\:‘ Keurig

D Custom Variety Pack

D Dunkin' Donuts

Customers also shopped Amazon's Choice for...
"k cups" "k cups coffee”

0059555000

SPPRL000

L55:5008
POOREENAN

Crave Coffee Flavc
Variety Pack, Com
AR AR V1,61
$3390 (30.33/Coun
Save 5% more with ¢

sotMo

French Roast

Dark Roast

Wang et al., 21; Mao et al., KDD’20; Yu et al., KDD’20

Scientific taxonomy

Nuisance
dangerous
Substancs [Pollutant
inflammable toxic Atmospheric
product substance Pollutant
combustion Greenhouse Dust
gases gas




Introduction

e Taxonomy curation is expensive
and suffers from limited coverage

e Our task: taxonomy expansion
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Attach new concept to an existing
taxonomy
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o Attach new concept to an existing
taxonomy

e Taxonomy size grows exponentially

e Hyperbolic space can better
capture lower-level concepts with
better expressiveness




HyperkExpan

A taxonomy expansion framework based on hyperbolic representation learning

Better preserves the taxonomical structure in a
more expressive hyperbolic space

Characterizes concepts by exploiting sparse
neighborhood information

Improves inference precision and generalizability by
leveraging pretrained distributional features




Model design
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Step 1: initial concept features
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Step 2: anchor concept representation
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Step 2: anchor concept representation
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Step 2: anchor concept representation

change
integrity

‘//f cook

O O m roast

© 0 O
Ego graph

Query concept g7/ @

Positional embeddings
Parent I oiute |

Initial concept
features

Hidden
layers

Hyperbolic GNIN

Initial concept feature

Anchor concept
representation

Score

Query concept
representation

10



Step 2: anchor concept representation
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Step 2: anchor concept representation
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Step 2: anchor concept representation
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Step 2: anchor concept representation
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Step 3: matching module

. Positional embeddings

. Pemr;: I ppsolute |
Selt I— :
i Children oepth

v

Hidden
layers

Initial concept
features

Ego graph

Hyperbolic GNIN

Queryconcept g/j// @ -~~~ - e oo oomoo oo
Initial concept feature

Anchor concept

Graph representation

Readout

Hyperbolic

MLP Score

Query concept
representation

15



Learning and inference

e Training
o Self-supervision: positive + negative pairs

Training/seed graph
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o Loss function

Self-supervised data points
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Learning and inference

e Inference

Query node pending to attach
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Experiments

Recall % 1 Precision % 1 Recall % 1 Precision % 1

Model WAL WY @] @5 @10|] @1 @5 @10 WAL Wy @] @5 @10|] @1 @5 @10
WordNet-Verb (Candidates #: 11,936) \ WordNet-Noun (Candidates #: 81,073)
ARBORIST 608.7 0.280 [10.8 24.0 27.7| 6.7 4.8 3.2| 1095.1 0.435 |16.5 28.4 34.1/16.8 58 3.5
TaxoExpan 502.8 0.439 [12.4 282 352|124 5.6 3.5| 649.6 0.562 [19.7 38.2 47.4|20.1 7.8 4.8
TMN 465.0 0.479 |14.9 31.6 379(13.2 64 4.0/ 501.0 0.595 |20.7 40.5 50.1|21.1 83 5.1
GCN 456.9 0.445 |10.9 27.2 34.5[109 54 3.5| 684.1 0.563 |20.9 39.8 47.3|21.3 8.1 4.8
GAT 471.7 0.449 |11.6 28.7 35.6/11.6 5.7 3.6| 640.7 0.585 |22.3 40.9 49.7|22.7 83 5.1
HYPEREXPAN 400.8 0.517 [15.0 32.8 42.7[15.0 6.6 4.3[ 573.6 0.607 [23.9 42.1 52.5 [24.4 8.6 54
MAG-PSY (Candidates #: 21,187) \ MAG-CS (Candidates #: 22,754)

ARBORIST 119.9 0.722 |21.0 48.4 62.9(25.8 12.5 7.7| 28477 0.602 |15.1 38.9 49.4|24.6 12.6 8.0
TaxoExpan 68.5 0.775 |26.1 56.9 69.5|33.8 14.7 9.0/ 189.8 0.661 [15.9 429 55.4|25.8 13.9 9.0
TMN 73.0 0.781 |25.8 58.7 70.5|33.4 152 9.1| 160.5 0.667 [16.0 43.1 56.3|26.0 14.0 9.1
GCN 51.4 0.742 |23.8 52.5 64.3|30.8 13.6 7.4 90.3 0.653 |14.5 39.6 53.3|23.6 129 8.7
GAT 48.6 0.751 [23.6 52.4 65.8|30.5 13.5 8.5 92.2 0.676 |15.9 41.9 56.0|259 13.6 9.1
HYPEREXPAN 384 0.827 \28.8 63.0 75.3\37.2 16.3 9.7\ 74.4 0.689 \16.1 44.6 58.0\26.1 145 94

e HyperExpan get large
performance increase
compared with GCN
and GAT due to
expressiveness of the
hyperbolic space

® HyperExpan

outperforms previous
SOTA TMN
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Ablation study

Rec 1 | Prec t
Model MRR 1 @10 | @1
w/o trainable curvature | 0.490 | 40.8 | 14.4
anchor + parent + children | 0.506 | 42.2 | 15.0
#4 + anchor’s ancestors 0.505 | 425 | 15.5
#5 + anchor’s descendants 0.517 | 42.7 | 15.0
#6 + anchor’s siblings 0.502 | 41.7 | 14.5
w/o Relative Pos Emb 0.497 | 40.8 | 13.0
w/o Absolute Pos Emb 0.503 | 41.2 | 14.3
w/o both Positional Emb 0.482 | 38.8 | 12.5
HYPEREXPAN | 0517 | 427 | 15.0

Trainable curvature leads fine-grained manifold
setting

Adding descendant or ancestors of the anchor
node is helpful, anchor’s sibling nodes are not
Positional embeddings are helpful
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Conclusion

e HyperExpan: a taxonomy expansion model which better preserves the
taxonomical structure in an expressive hyperbolic space

e Use HGNN to incorporate neighborhood information and positional features
of concepts

e Experimental results show that HyperExpan performs better than its
Euclidean counterparts and achieves the state-of-the-art
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