

EventPlus A Temporal Event Understanding Pipeline

Mingyu Derek Ma*, Jiao Sun*, Mu Yang, Kung-Hsiang Huang, Nuan Wen, Shikhar Singh, Rujun Han, Nanyun Peng

Try our demo at: kairos-event.isi.edu

Code available at: github.com/pluslabnlp/eventplus

Event Understanding

toured is the predicate, its type is *Transport*

George Pataki (Artifact)
toured countries (Destination)

Trigger/Type

A powerful ice storm continues to maintain its grip. Yesterday New York governor George Pataki toured five counties that have been declared under a state of emergency.

Arguments

Event Duration

toured can take days
maintain can take months

Temporal Relation

toured happens after declared declared happens after maintain

Token-level Tasks

- Tokenization
- Lemmatization
- POS tagging

Sentence-level Tasks

- Syntactic parsing
- Semantic role labeling

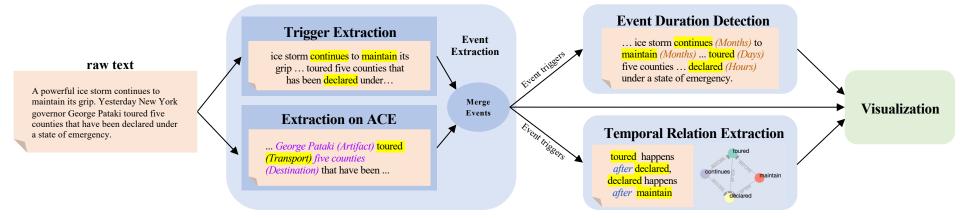
Semantic-level Tasks

- For example, events and temporal relations
- Separate works for event extraction, temporal relation and duration extraction, not comprehensive and coherent

Tao et al., 2013; Ning, 2019; Manning et al., 2014; Khashabi et al., 2018; Peng et al., 2015; Noji and Miyao, 2016

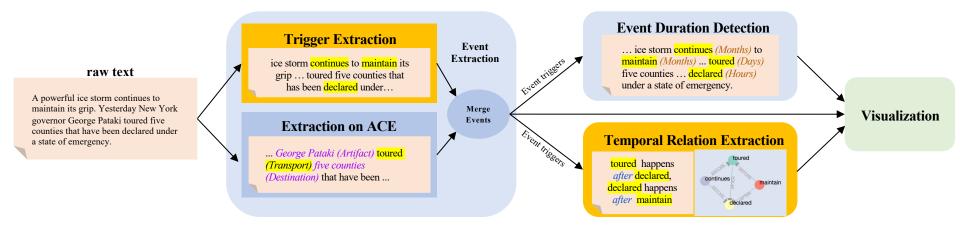
EventPlus .

- The first event pipeline system providing comprehensive event understanding capabilities
- Each component in EventPlus has comparable performance to the state-ofthe-art



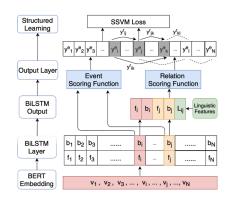
Event definition

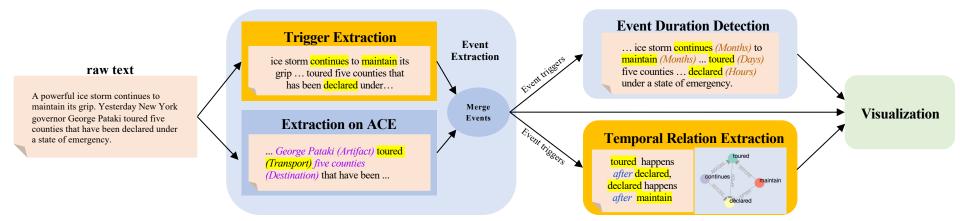
- Trigger word
 - Broader coverage
- Complex structure
 - Richer information



Component 1: Multi-task Learning of Event Trigger and Temporal Relation Extraction

- Event trigger extraction: raw text -> list of words
- Temporal relation extraction: list of words -> relations among them
- Intuition: event relation signals can help to distinguish event/non-event tokens
- BERT embedding + BiLSTM layer





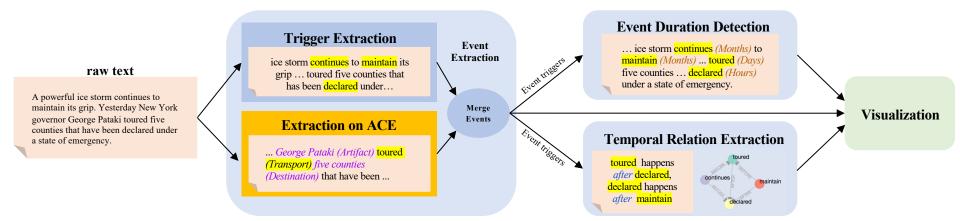
Component 1: Multi-task Learning of Event Trigger and Temporal Relation Extraction

Corpus	Model	F1
TB-Dense	Chambers et al. (2014)	87.4
	Chambers et al. (2014) Han et al. (2020a)	90.3
	Ours	90.8
MATRES	Ning et al. (2018b)	85.2
	Ours	87.8

Corpus	Model	F1
TB-Dense	Vashishtha et al. (2019)	56.6
	Meng and Rumshisky (2018)	57.0
	Ours	64.5
MATRES	Ning et al. (2018b)	65.9
	Ning et al. (2018a)	69.0
	Ours	75.5

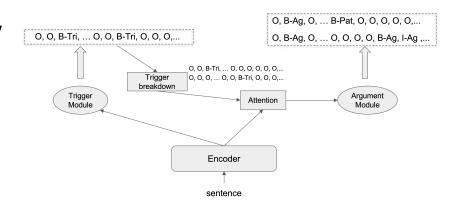
Performance of event trigger extraction

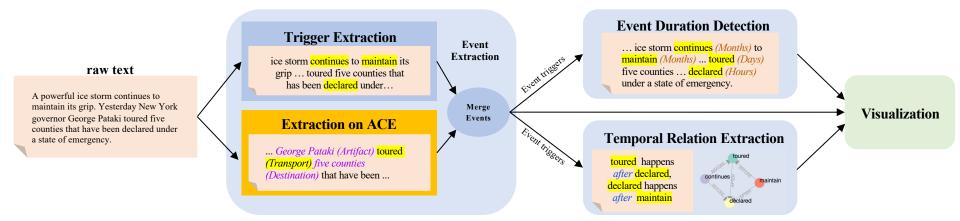
Performance of temporal relation extraction



Component 2: Event Extraction on ACE Ontology

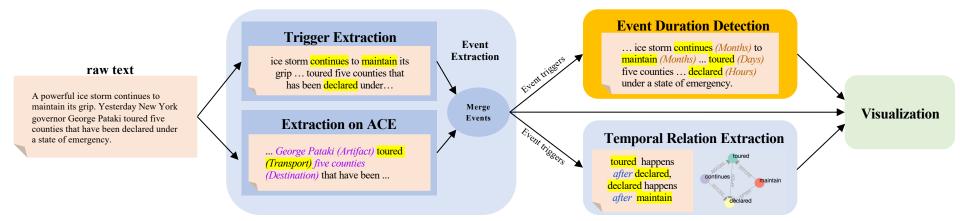
- Raw text -> semantic rich information of events
- Trained with ACE2005 corpus
- Multi-task learning of trigger detection, argument role detection and entity detection with shared BERT encoder
- Inference constraints
 - Entity-Argument constraint
 - **Entity-Trigger constraint**
 - Valid Trigger-Argument constraint





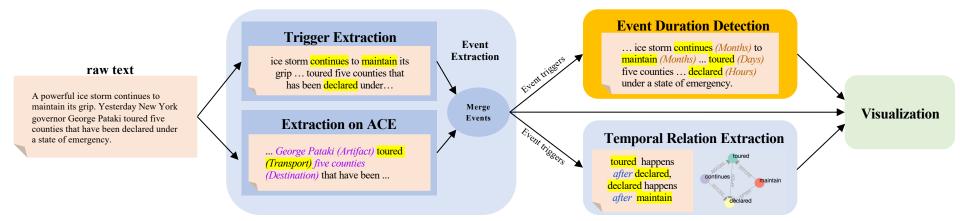
Component 2: Event Extraction on ACE Ontology

	NER	Trigger ID	Trigger CLS	Arg ID	Arg CLS
OneIE (Lin et al., 2020) w/ predicted entities	90.2	78.2	74.7	59.2	56.8
Ours w/ predicted entities	91.3	75.77	72.45	57.74	55.65



Component 3: Event Duration Detection

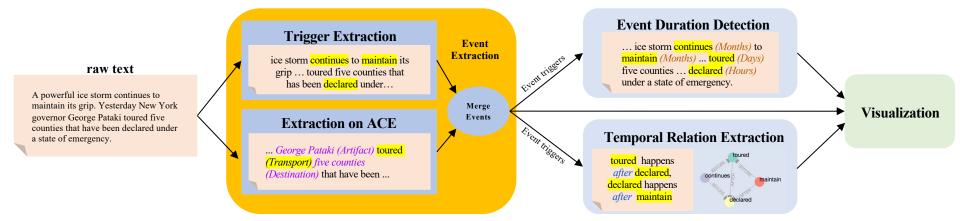
- Classifies event triggers into duration categories
- Model 1: Fine-tuned BERT
- Model 2: ELMo embeddings followed by attention layers to get attended representation of the event predicate (Vashishtha et al., 2019)
- Dataset 1: UDS-T (Vashishtha et al., 2019) over 11 duration categories (instant, seconds, minutes, hours, days, weeks, months, years, decades, centuries)
- Dataset 2: Typical-Duration (Pan et al., 2006) over 7 duration categories (seconds, minutes, hours, days, weeks, months, years)
- Dataset 3: ACE-Duration over 7 duration categories
 (seconds, minutes, hours, days, weeks, months, years)



Component 3: Event Duration Detection

	Typical-Duration			ACE-Duration		
Model	Acc	Acc-c	Corr	Acc	Acc-c	Corr
UDS-T (U)	0.20	0.54	0.59	0.38	0.68	0.62
UDS-T (T)	0.52	0.79	0.71	0.47	0.67	0.50
UDS-T(T+U)	0.50	0.76	0.68	0.49	0.74	0.66
BERT (T)	0.59	0.81	0.75	0.31	0.67	0.64
BERT (T+U)	0.56	0.81	0.73	0.45	0.79	0.70

- Dataset 1: UDS-T (Vashishtha et al., 2019) over 11 duration categories (instant, seconds, minutes, hours, days, weeks, months, years, decades, centuries)
- Dataset 2: Typical-Duration (Pan et al., 2006) over 7 duration categories (seconds, minutes, hours, days, weeks, months, years)
- Dataset 3: ACE-Duration over 7 duration categories
 (seconds, minutes, hours, days, weeks, months, years)

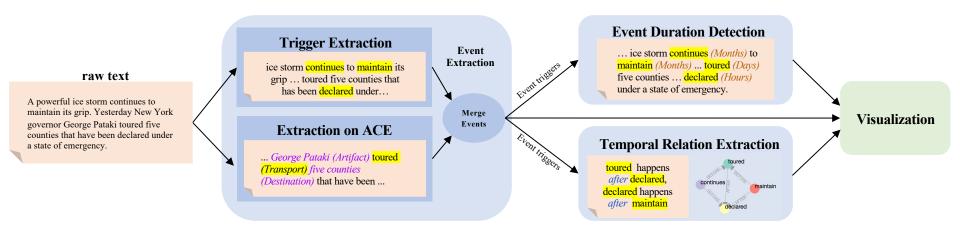


Component 4: Negation and Speculation Cue Detection and Scope Resolution

The United States is **not** considering sending troops to Mozambique The United States **might** send troops to Mozambique

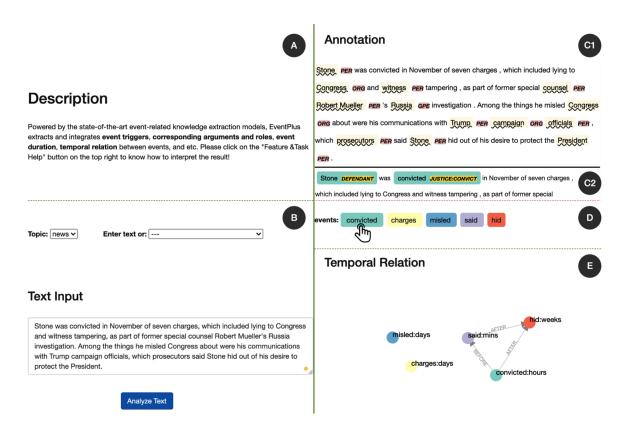
- Identifies speculation and negation events
- Step 1: cue detection
- Step 2: scope resolution
- BERT-based cue detection model and BERT-based scope resolution model (Khandelwal and Sawant, 2020)
- Train and test on SFU Review dataset with negation and speculation annotations
- 0.92 F1 score for cue detection, 0,88 F1 score for token-level scope resolution

Pipeline Design



Interface Design

https://kairos-event.isi.edu

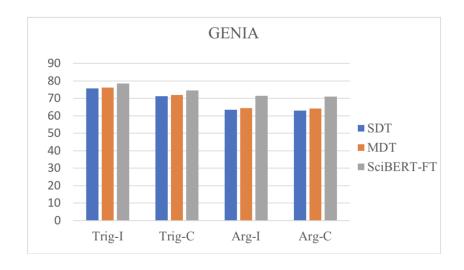


Extension to Biomedical Domain

Each component of EventPlus can be easily extended to other domains

Two approaches to extend event extraction to biomedical domain

- Multi-domain training (MDT) with GENIA
- Replace current component with an in-domain event extraction component: SciBERT-FT (Huang et al., 2020)



System Demo

Thanks!

EventPlus

A Temporal Event Understanding Pipeline

Mingyu Derek Ma*, Jiao Sun*, Mu Yang, Kung-Hsiang Huang, Nuan Wen, Shikhar Singh, Rujun Han, Nanyun Peng

