
Fall 2021, Section 1C
Mingyu Derek Ma mdma@ucla.edu
Thanks Muhao Chen and Rosa Garza for their shared content

CS31 Week 8 Discussion

0
https://derek.ma/cs31 for slides and other discussion materials

https://derek.ma/cs31

● Project 6 due on the coming Monday, Nov 22nd

● Worksheet available for next week
● Next Monday office hours: Alexis will sub me for the first two hours

1

Reminder

● Print out intermediate variable values to check whether they meet your
expectation

● Use functions/loops to avoid repeating code for similar behavior
○ Repeated code can lead to typos and make the code more complicated and hard

to debug
● Set global constant variable for magic numbers

○ It will be easier to understand and less duplication
● Check variable scope and array boundary

○ Do not define variable inside a function and use it outside the function
○ Make sure your loop/other statements do not use out-of-bound elements of an

array
● Be aware of memory leak

2

Project Suggestions

● To save records to some data structures, what can we do?
○ Saving the following information of students

■ Name
■ ID
■ Email
■ Grade

● Using separate arrays to save different kind of information is inconvenient
○ What if we want to swap records of two students

3

struct

#define NUM_STUDENT 33
string name[NUM_STUDENT];
int id[NUM_STUDENT];
string email[NUM_STUDENT];
char grade[NUM_STUDENT];

4

Define a struct

struct student {
string name;
int id;
string email;
char grade;

}; //Note: there a semi-colon here

5

Declare objects of a struct

// declare an object
student eric;
// declare an array of objects
student students[33];

● Use
object_name.attribute_name
to access attribute

● Accessing attributes of an
uninitialized struct object results in
undefined behaviors

6

Initialize objects of a struct

● We can use . with dereference
● More commonly: we can use ->
● Difference between . and ->

○ Left-hand side of . is a struct
object

○ Left hand side of -> is a pointer to
a struct object

7

Access attributes of a struct pointer

8

Access attributes of a struct pointer
//Four ways to access attributes

student[0].name
s1 -> name

// following are not really used
in practice
(*s1).name
(&student[0])->name

● We can use . with dereference
● More commonly: we can use ->
● Difference between . and ->

○ Left-hand side of . is a struct
object

○ Left hand side of -> is a pointer to
a struct object

9

class class vending_machine {
public:

int get_num() const; //accessor
double get_price() const; //accessor
void set_num(const int& num);//modifier

private:
int num;
double price;

};
class human {
public:

bool buy_one(const vending_machine &vm);
private:

int num_items;
double cash;

};

10

Member functions
// Accessor

int vending_machine::get_num() const {
return num; // style 1
return this -> num; // style 2
// this is a pointer that points to the object itself

};

// Modifier

void vending_machine::set_num(const int& num){
this -> num = num;

};

● Functions to specify the behavior of object initiation
● Used to initialize member variables of the class/struct when we create an

object of this class/struct
● Function name is the same as the class name, no return type specification
● Constructor without parameter:

11

Constructors

vending_machine::vending_machine() {
num = 10;
price = 1.75;

};

vending_machine vm;
// vm is a vending machine object that sells 10 items at $1.75 each

● Constructor with parameters

12

Constructors

vending_machine::vending_machine(const int& num, const double &
price) {

this->num=num;
this->price=price;

};

vending_machine vm(30, 2.0); //vm sells 20 items at $2 each

● If we do not specify any constructors for a class, an empty constructor will be
provided by default without parameters. If we specify a constructor, the
empty one will be overwritten

13

Constructors

class human {
public:

bool buy_one(const vending_machine &vm);
private:

int num_items;
double cash;

};
human::human(const int& num, const double & cash) {

this->num_items = num;
this->cash=cash;

};

● We cannot do human
hm;

● Because the empty
one is replaced by the
specified one, so we
should do human
hm(30, 80.5);

● Corresponding
constructor is
called
depending on
the
combination of
parameter
types when
calling the
constructor

14

Multiple Constructors with Different Parameter Types
class human {
public:

bool buy_one(const vending_machine &vm);
private:

int num_items;
double cash;

};
human::human(const int& num, const double & cash) {

this->num_items = num; this->cash=cash;
};
human::human(const double & cash) {

this->num_items=0; this->cash=cash;
};
human::human() {

this->num_items=0; this->cash=60.0;
};

● A private member
variable/function
can only be seen
by the code of this
class

● Other classes,
functions, main
function cannot
see private
members

15

Private member variables/functions
class vending_machine {
public:

int get_num() const; //accessor
double get_price() const; //accessor
void set_num(const int& num);//modifier

private:
int num;
double price;

};
class human {
public:

bool buy_one(const vending_machine &vm);
private:

int num_items;
double cash;

};

16

Private
member
variables/
functions

// Wrong implementation
bool human::buy_one(const &vending_machine vm) {

if (vm.num <= 0 || this->cash <= vm.price)
return false;

vm.num -= 1;
this->cash -= vm.price;
return true;

}

// Right implementation
bool human::buy_one(const &vending_machine vm) {

if (vm.get_num() <= 0 || this->cash <=
vm.get_price())

return false;
vm.set_num(vm.get_num() – 1);
this->cash -= vm.get_price();
return true;

}

● Things to do when an object is destructed
● Will introduce on next Monday

17

Destructor

● They are the same besides their default member variable/function’s visibility
● struct: default set to public
● class: default set to private, more secure by default
● Operations are shared between struct and class

18

Difference struct vs class

● Static memory allocation is not flexible
○ If the data we want to save is too large, then it’s out-of-bound is we set the small

limit
○ If the data we want to save is too small, then we waste a lot of memory

● Dynamic memory allocation
○ Allocate at runtime, not compile time

19

Dynamic Memory Allocation

20

● We need to manually delete the objects created by new, if not there is memory
leak issue

● Need to make sure you keep the pointer point to a dynamically allocated
object
○ vm does not point to the first object any more
○ We have no way to access or release it

21

Memory leak

vm = new vending_machine;
vm = new vending_machine;
delete vm;

Thank You

22

