
Fall 2021, Section 1C
Mingyu Derek Ma mdma@ucla.edu
Thanks Muhao Chen, Alexis Korb, Rosa Garza for their shared content

CS31 Week 6 Discussion

0
https://derek.ma/cs31 for slides and other discussion materials

https://derek.ma/cs31

● Project 5, Monday Nov 15, 11pm

1

Reminder

● Comment your program logic, especially for complicated function like
obeyPlan()

● Need to provide concrete test cases, rather than high-level design thoughts
about test cases

● Need to have test cases for all functions, rather than just obeyPlan()
● Need to have brief reason for your test cases
● Use pseudocode to describe your program design, instead of paragraphs

2

Project 3 Feedback

● Variable-length array is not allowed
○ g++ extension of variable-length arrays won’t compile under g31

● All arrays must have bounds known at the compile time

3

Project 5 Suggestions

● An array of arrays
○ Two-dimension represents a matrix (2-d tensor)
○ Three-dimension represents a cube (3-d tensor)

● All elements in a multi-dimensional array have to be the same type

4

Multi-dimensional array

● int x[3][4];
○ 3 rows, 4 columns matrix
○ 3 arrays with length 4

● type name [#rows][#cols]
○ Both #rows and #cols need to specified in declaration if without

initialization
○ Similar to 1-d array declaration, where we also have to specify

number of elements when initialize a new array

5

Declare a 2-d array without initialization

6

Initialize a 2-d array

● What about we want less elements for a certain row
● int xy[3][4] = { {1,2,3,4} , {5,6}, {4,3,2,1} };

○ Missing elements in such rows will be all-zero

● int xy[3][4] = { 1, 2, 3, 6, 7, 8, 4, 3, 2 };
○ Elements in the end will be all-zero

7

Initialize a 2-d array

8

Initialize a 2-d array: Unacceptable ways

● Access an element
○ a[1][2] takes you to the second row third column -> 7

● Access a row
○ a[1] gives you the start address of the second row -> {5, 6, 7, 8}

● Access a column
○ There is no direct way to access a column

9

Access elements in a 2-d array

10

Example

● The program will run without error if we access out of bound values
● We need to remember the boundaries of 1-d arrays ourselves

11

2-d array will not check the bound

● Array of strings is similar to a two dimensional character array

12

String array

● Need to specify the size of all dimensions except for the first
● Must pass the size of the first dimension as a separate parameter

13

Pass multidimensional arrays to functions

void functionOne(int a[][5][10], int l) {
…

}

int main(){
int b[2][5][10];
functionOne(b, 2)

}

● String in C language
● We can initialize it with a string value
● It uses a null byte (‘\0’) to denotes its end
● Benefit: performance, faster and uses less memory

14

C-String

● With a string c[n], we can initialize it with a string value with the maximum
length of n-1

● You can also initialize it with a set of char ended with a ‘\0’
● {'a', 'b', ‘c’} is not “abc”

15

Initialize a c-string

● Output characters until reaching a ‘\0’

16

cout a c-string

● We need to copy element by element
● Deep copy

17

Copy a c-string

● The first ’\0’ always represents the end
● But characters after the first ‘\0’ is still saved, they

will not show up when you print the c—tring out

18

What if there are multiple null bytes

● include <cstring>
○ Includes the library functions for C-strings

● strlen(s)
○ Returns the length of s

19

Library functions for C-string

● Copy the c-string s to c-string t, deep copy
● Need to make sure the declared space for t is enough to take elements from s

20

strcpy(t, s)

● Copy at most n characters from s to t
● Note: if length of s > n, then ’\0’ is not copied to t

○ We cannot assume t as a complete C-string
○ We have to manually assign t[n] = ‘\0’;

21

strncpy(t, s, n)

● Append C-string s to the end of t
● The returned value will be t, variable t’s value will be changed to the

appended string
● Need to make sure t has enough space for elements in both s and t

22

strcat(t, s)

● Compare two c-strings
○ s==t; s < t; s > t; won’t work

● Return value is int, not boolean
○ t equals to s: return 0
○ t less than s: return something < 0
○ t greater than s: return something > 0

● Use strcmp for if condition
○ if (strcmp(t, s) != 0)
○ if (strcmp(t, s) < 0)
○ if (strcmp(t, s) > 0)

23

int strcmp(char *t, char *s)

24

Convert a C-string to a C++ string

● c_str()
● Get the “C-string

body” of a C++ string

25

Convert a C++ string to a C-string

● A C-string is an array of characters. An array of C-strings
is 2D array

● char s[10][20];
○ We can store up to 10 C-strings, each can be at most

19 characters long

26

Array of C-strings

● We cannot directly cout
an array of C-strings

● But we can cout a single
C-string

● We can also cout a
character in a C-string

27

Array of C-strings

Functionality C++ strings C strings Notes

Necessary libraries #include <string> None needed

Useful libraries #include <cctype> #include <cstring> <cstring> needed for strcpy, strlen,
strcat, strcmp

Declare a string string s = “Hello”;
string t = “Hey”;

char s[6] = “Hello”;
char t[10] = “Hey”;

For C strings, the declared size of the
character array must be at least as big
as the number of characters in the
string including the zero byte.

Assigning a new
value

s = “Hi”;
s = t;

strcpy(s, “Hi”);
strcpy(s, t);

For C strings, if s is not big enough to
hold the string that is being copied
into it, you get undefined behavior.

Getting length of a
string

s.length();
s.size();

strlen(s); For C strings, the zero byte is not
included in the length output by
strlen

Appending to a
string

s += “bye”;
s += t;

strcat(s, “bye”);
strcat(s, t);

For C strings, if s is not big enough to
hold its new value, you get undefined
behavior.

Functionality C++ strings C strings Notes

Getting a string as
input

string s;
cin.getline(s, 10000);

char s[10];
cin.getline(s, 10);

For C strings, the second parameter
should be no larger than the length of
the character array for s.

Printing out a string cout << s; cout << s;

Getting the ith
character of a
string

char c = s[i]; char c = s[i];

Assigning to the ith
character of a
string

s[i] = ‘a’; s[i] = ‘a’; For C strings, make sure not to
overwrite the zero byte. You can,
however, move the zero byte.

Comparing two
strings

if (s < t)
if (s > t)
if (s == t)
if (s != t)

if(strcmp(s, t) < 0)
if(strcmp(s, t) > 0)
if(strcmp(s, t) == 0)
if (strcmp(s, t) != 0)

Functionality C++ strings C strings

Iterating through a
string

for(int k = 0; k != s.size(); k++)
{

…
}

for(int k = 0; s[k] != ‘\0’; k++)
{

…
}

Passing a string to a
function

void f(string s) { … }

int main() {
{

string t = “Hello”;
f(t);

}

void f(char s[]) { … }

int main() {
{

char t[6]= “Hello”;
f(t);

}

Functionality C++ strings C strings

Array of strings string a[3] = {“Hello”, “Hi”, “Hey”}; char a[3][6] = {“Hello”, “Hi”, “Hey”};
// The last dimension must be big
// enough to hold all strings in the
// array.

Getting the ith element
of an array

string s = a[i]; char s[6];
strcpy(s, a[i]);
// The size of the new C string must be
// big enough to hold the element

Passing an array of
strings to a function

void f(string a[], int n) { … }

int main() {
{

string a[3] = {“Hello”, “Hi”, “Hey”};
f(a, 3);

}

void f(string a[][6], int n) { … }

int main() {
{

char a[3][6] = {“Hello”, “Hi”, “Hey”};
f(a, 3);

}

Thank You

32

